In this paper, we use the mean curvature flow PDE and geodesic ODE to smooth and trace evolving curves as boundaries of minimal surfaces for a gray-scale image to capture their boundaries.
1. T. Batard, C. Saint-Jean, M. Berthier, A Metric Approach to nD Images Edge Detection with Clifford Algebras, J. Math. Imaging Vis. 33(2009), 296-312.
2. F. Benmansour, L. D. Cohen, Fast Object Segmentation by Growing Minimal Paths from a Single Point on 2D or 3D Images, J. Math. Imaging Vis. 33(2009), 209-221.
3. P. Bose, A. Maheshwari, C. Shu, S. Wuhrer, A Survey of Geodesic Paths on 3D Surfaces, Computational Geometry, 44(2011), 486-498.
4. A. Cumani, Edge Detection in Multispectral Images, Graphical Models and Image Processing, 53, 1991, 40-51.
5. A. Gooya, T. Dohi, I. Sakuma, H. Liao, R-PLUS: A Riemannian Anisotropic Edge Detection Scheme for Vascular Segmentation, Medical Image Computing and ComputerAssisted Intervention (MICCAI, 2008), 262-269.
6. R. Kimmel, N. Sochen, R. Malladi, From high energy physics to low level vision, ScaleSpace Theory in Computer Vision, 1997.
7. U. Kothe, Edge and Junction Detection with an Improved Structure Tensor, Pattern Recognition Proceeding, 2003, 25-32.
8. D. Marr, Vision, MIT Press, 2010.
9. E, Peyghan, E. Sharahi, A. Baghban, Adams-Moulton Method approach to geodesic paths on 2D surfaces, MACO. 1(2020), 81-93.
10. G. Peyr, M. Pchaud, R. Keriven, L. D. Cohen, Geodesic Methods in Computer Vision and Graphics, Foundations and Trends in Computer Graphics and Vision, Now Publishers, 5, 2010, 197-397.
11. D. Phillips, Image processing in C, Prentice Hall, 1994.
12. M. M. Postnikov, Geometry VI: Riemannian Geometry, Springer-Verlag, 2001.
13. G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2006.
14. C. Scheffer, J. Vahrenhold, Approximating geodesic distances on 2-manifolds in R2 , Computational Geometry. 47(2014), 125-140.
15. Z. Zhang, E. Klassen, A. Srivastava, P. Turaga, R. Chellappa Blurring-Invariant Riemannian Metrics for Comparing Signals and Images, IEEE International Conference on Computer Vision, 2011.
16. D. Zosso, X, Bresson, JP. Thiran, Geodesic active fields-a geometric framework for image registration, IEEE Trans Image Process, 20(2011), 1300-1312
Peyghan, E., & Sharahi, E. (2022). Gray scale image processing with Riemannian geometry. Journal of Finsler Geometry and its Applications, 3(1), 66-71. doi: 10.22098/jfga.2022.9738.1057
MLA
Esmaeil Peyghan; Esa Sharahi. "Gray scale image processing with Riemannian geometry", Journal of Finsler Geometry and its Applications, 3, 1, 2022, 66-71. doi: 10.22098/jfga.2022.9738.1057
HARVARD
Peyghan, E., Sharahi, E. (2022). 'Gray scale image processing with Riemannian geometry', Journal of Finsler Geometry and its Applications, 3(1), pp. 66-71. doi: 10.22098/jfga.2022.9738.1057
VANCOUVER
Peyghan, E., Sharahi, E. Gray scale image processing with Riemannian geometry. Journal of Finsler Geometry and its Applications, 2022; 3(1): 66-71. doi: 10.22098/jfga.2022.9738.1057