On a Bernstein-type theorem for minimal surfaces with Matsumoto metric

Document Type : Original Article

Authors

DST-CIMS, Institute of Science, Banaras Hindu University, Varanasi-221005, India

Abstract

In this paper we characterize a minimal surface with Matsumoto metric and prove a Bernstein-type theorem for surfaces which are graphs of smooth functions. We also obtain the partial differential equation that characterizes the minimal translation surfaces and show that plane is the only such surface.

Keywords


  • 1. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J.
    Math. 169 (2009) 317–340.
  • 2. S. S. Chern and Z. Shen, Riemannian-Finsler geometry. World Scientific Publisher, Singapore (2005).
  • 3. N. Cui and Y. B. Shen, Bernstein type theorems for minimal surfaces in (α, β)-space,
    Publ. Math. Debrecen, 74(2009), 383-400.
  • 4. N. Cui, On minimal surfaces in a class of Finsler 3-spheres, Geom. Dedicata, 168(2014),
    87-100.
  • 5. N. Cui, Nontrivial minimal surfaces in a class of Finsler 3-spheres, Int. J. Math., 25(4),
    1450034(17 pages) (2014).
  • 6. N. Cui and Y. B. Shen, Nontrivial minimal surfaces in a hyperbolic Randers space, Math.
    Nachr., 290(4)(2017), 570-582.
  • 7. M. Matsumoto, A slope of mountain is a Finsler surface with respect to a time measure,
    J. Math. Kyoto Univ. 29(1989), 17-25.
  • 8. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric. Rep. Math. Phys.
    31(1)(1992), 43-83.
  • 9. M. Matsumoto, Finsler Geometry in the 20th Century, in Handbook of Finsler geometry
    Ed. P. L. Antonelli, Kluwer Acad. Publ. (2003).
  • 10. R. Osserman, A Survey of minimal surfaces, Dover Publication, (2002).
  • 11. T. Rado, On Plateau’s problem, Ann. of Math., 31(1930), 457-469.
  • 12. R. M. da Silva and K. Tenenblat, Helicoidal Minimal Surfaces in a Finsler Space of
    Randers Type, Canad. Math. Bull. 57(2014), 765–779.
  • 13. L. Simon, Equations of mean curvature type in 2 independent variables, Pac. J. Math.
    69(1977), 245–268.
  • 14. L. Simon, A Holder Estimate for Quasiconformal Maps Between Surfaces in Euclidean
    Space, Acta Math., 139(1977), 19–51.
  • 15. Z. Shen, On Finsler geometry of submanifolds, Math. Ann., 311(1998), 549-576.
  • 16. M. Souza and K. Tenenblat, Minimal surfaces of rotation in Finsler space with a Randers
    metric, Math. Ann. 325(2003), 625–642.
  • 17. M. Souza, J. Spruck and K. Tenenblat, A Berstein type theorem on a Randers space,
    Math. Ann. 329(2004), 291–305.