Conformal vector fields of square Finsler metrics

Document Type : Original Article

Author

Department of Mathematics, Government Science College Chitradurga - 577501, India. nateshmaths@gmail.com

Abstract

In this paper, we study the conformal vector fields of Finsler space with the special metric, known as Z. Shen's Square metric. Further we defined the special metric in Riemannian metric α  and 1-form β and its norm. Then we characterize the PDE's of conformal vector fields on special metric.

Keywords


  • 1. L. Kang, On conformal vector fields of (α, β)-spaces, Preprint, 2011.
  • 2. L. Kang, On conformally flat Randers metrics, Sci. Sin. Math. 41(5)(2011), 439-446.
  • 3. P. Habibi, Geodesic vectors of invariant square metrics on nilpotent Lie groups of dimension five, Journal of Finsler Geometry and its Applications, 2(1) (2021), 132-141.
  • 4. B. Li and Z. Shen, On a class of projectively flat Finsler metrics with constant flag
    curvature, Int. J. of Math. 18(7)(2007), 1-12.
  • 5. M. Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha
    Press, Saikawa, Japan, 1986.
  • 6. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 30(1991),
    15-20.
  • 7. N. Natesh, S.K. Narasimhamurthy and M.K. Roopa , Conformal vector fields on Finsler
    space with special (α, β)-metric, J. Adv. Math. Computer. 31(4) (2019), 1-8.
  • 8. M. Rafe, A. Kumar and G.C. Chaubey, On the Hypersurface of a Finsler space with the
    square metric, Int. J. Pure. Appl. Math. 118(2018), 723-733, ISSN:1311-8080.
  • 9. M. Rafie-Rad and B. Rezaei, On the projective algebra of Randers metric of constant flag
    curvature, Symmetry, Integrability and Geometry: Methods and Applications, SIGMA.
    7(2011), 085, 12 pages.
  • 10. M. Rafie-Rad and A. Shirafkan, On the C-projective vector fields on Randers spaces, J.
    Korean Math. Soc. 57(2020), 1005-1018.
  • 11. Z. Shen, On projectively flat (α, β)-metrics, Canadian Math. Bull., 52(1) (2009), 132-144.
  • 12. Z. Shen, On some non-Riemannian quantities in Finsler geometry , Canad. Math. Bull.
    56(2013), 184-193.
  • 13. Z. Shen, Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers,
    Dordrecht, 2001.
  • 14. Z. Shen and Q. Xia, On conformal vector fields on Randers manifolds, Sci China Math,
    55(2012), 1869-1882.
  • 15. Z. Shen and Q. Xia, A class of Randers metrics of scalar flag curvature, Int J Math,
    24(2013), 146-155.
  • 16. Z. Shen and Q. Xia, Conformal vector fields on a locally projectively flat Randers manifold, Publ. Math. Debrecen. 84(2014), 463-474.
  • 17. Z. Shen and H. Xing, On Randers metrics of isotropic S-curvature, Acta Math Sin Engl
    Ser, 24(2008), 789-796.
  • 18. Z. Shen and G. Yang, On square metrics of scalar flag curvature, Israel J. Mayh.
    224(2018), 159-188.
  • 19. Z. Shen and M.G. Yuan, Conformal vector fields on some Finsler manifolds, Sci China
    Math, 59(2016), 107-114.
  • 20. A. Tayebi, E. Peyghan and H. Sadeghi, On a class of locally dually flat Finsler metrics
    with isotropic S-curvature, Indian J. Pure Appl Math, 43(5) (2012), 521-534.
  • 21. H.J. Tian, Projective vector fields on Finsler manifolds, Appl Math J-Chiese Univ.
    29(2)(2014), 217-229.