In this paper, we study the conformal vector fields of Finsler space with the special metric, known as Z. Shen's Square metric. Further we defined the special metric in Riemannian metric α and 1-form β and its norm. Then we characterize the PDE's of conformal vector fields on special metric.
1. L. Kang, On conformal vector fields of (α, β)-spaces, Preprint, 2011.
2. L. Kang, On conformally flat Randers metrics, Sci. Sin. Math. 41(5)(2011), 439-446.
3. P. Habibi, Geodesic vectors of invariant square metrics on nilpotent Lie groups of dimension five, Journal of Finsler Geometry and its Applications, 2(1) (2021), 132-141.
4. B. Li and Z. Shen, On a class of projectively flat Finsler metrics with constant flag curvature, Int. J. of Math. 18(7)(2007), 1-12.
5. M. Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Japan, 1986.
6. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 30(1991), 15-20.
7. N. Natesh, S.K. Narasimhamurthy and M.K. Roopa , Conformal vector fields on Finsler space with special (α, β)-metric, J. Adv. Math. Computer. 31(4) (2019), 1-8.
8. M. Rafe, A. Kumar and G.C. Chaubey, On the Hypersurface of a Finsler space with the square metric, Int. J. Pure. Appl. Math. 118(2018), 723-733, ISSN:1311-8080.
9. M. Rafie-Rad and B. Rezaei, On the projective algebra of Randers metric of constant flag curvature, Symmetry, Integrability and Geometry: Methods and Applications, SIGMA. 7(2011), 085, 12 pages.
10. M. Rafie-Rad and A. Shirafkan, On the C-projective vector fields on Randers spaces, J. Korean Math. Soc. 57(2020), 1005-1018.
11. Z. Shen, On projectively flat (α, β)-metrics, Canadian Math. Bull., 52(1) (2009), 132-144.
12. Z. Shen, On some non-Riemannian quantities in Finsler geometry , Canad. Math. Bull. 56(2013), 184-193.
13. Z. Shen, Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001.
14. Z. Shen and Q. Xia, On conformal vector fields on Randers manifolds, Sci China Math, 55(2012), 1869-1882.
15. Z. Shen and Q. Xia, A class of Randers metrics of scalar flag curvature, Int J Math, 24(2013), 146-155.
16. Z. Shen and Q. Xia, Conformal vector fields on a locally projectively flat Randers manifold, Publ. Math. Debrecen. 84(2014), 463-474.
17. Z. Shen and H. Xing, On Randers metrics of isotropic S-curvature, Acta Math Sin Engl Ser, 24(2008), 789-796.
18. Z. Shen and G. Yang, On square metrics of scalar flag curvature, Israel J. Mayh. 224(2018), 159-188.
19. Z. Shen and M.G. Yuan, Conformal vector fields on some Finsler manifolds, Sci China Math, 59(2016), 107-114.
20. A. Tayebi, E. Peyghan and H. Sadeghi, On a class of locally dually flat Finsler metrics with isotropic S-curvature, Indian J. Pure Appl Math, 43(5) (2012), 521-534.
21. H.J. Tian, Projective vector fields on Finsler manifolds, Appl Math J-Chiese Univ. 29(2)(2014), 217-229.
Netaganata Natesh, N. (2021). Conformal vector fields of square Finsler metrics. Journal of Finsler Geometry and its Applications, 2(2), 134-143. doi: 10.22098/jfga.2021.9614.1053
MLA
Natesh Netaganata Natesh. "Conformal vector fields of square Finsler metrics", Journal of Finsler Geometry and its Applications, 2, 2, 2021, 134-143. doi: 10.22098/jfga.2021.9614.1053
HARVARD
Netaganata Natesh, N. (2021). 'Conformal vector fields of square Finsler metrics', Journal of Finsler Geometry and its Applications, 2(2), pp. 134-143. doi: 10.22098/jfga.2021.9614.1053
VANCOUVER
Netaganata Natesh, N. Conformal vector fields of square Finsler metrics. Journal of Finsler Geometry and its Applications, 2021; 2(2): 134-143. doi: 10.22098/jfga.2021.9614.1053