Dually flat Finsler spaces with transformed metrics

Document Type : Original Article

Authors

1 Department of Mathematics and Statistics, Central University of Punjab, VPO: Ghudda-151401, Bathinda, India. saritas.ss92@gmail.com

2 Department of Mathematics and Statistics, Central University of Punjab, VPO: Ghudda, Bathinda-151401, Punjab, India. grshnkr2007@gmail.com

3 Department of Mathematics, Punjabi University College Ghudda, Bathinda-151 001, Punjab, India. kiran5iitd@yahoo.com

Abstract

Current paper deals with the property of dually flatness of Finsler spaces with some special (α,β )-metrics constructed via Randers-β change. Here, we find necessary and sufficient conditions under which these (α,β )-metrics are locally dually flat. Finally, we conclude the relationship between locally dully flatness of these Randers-β change of Finsler metrics.

Keywords


  • 1. S. I. Amari and H. Nagaoka, Methods of Information Geometry, Translations of Mathematical Monographs, AMS, 191, Oxford Univ. Press (2000).
  • 2. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler
    Spaces with Applications in Physics and Biology, Vol. 58, Springer Science & Business
    Media (2013).
  • 3. S. A. Baby and G. Shanker, On Randers-conformal change of Finsler space with special
    (α, β)−metrics, International Journal of Contemporary Mathematical Sciences, 11 (9)
    (2016), 415-423.
  • 4. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
    Springer-Verlag, New York (2000).
  • 5. S. S. Chern, Finsler geometry is just Riemannian geometry without quadratic restriction,
    Notices of AMS, 43 (9) (1996), 959-963.
  • 6. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics,
    Vol. 6, World Scientific, Singapore (2005).
  • 7. R. Gardner and G. Wilkens, A pseudo-group isomorphism between control systems and
    certain generalized Finsler structures, Contemporary Mathematics, 196 (1996), 231-244.
  • 8. G. Kron, Non-Riemannian dynamics of rotating electrical machinery, Studies in Applied
    Mathematics, 13 (1934), 103-194.
  • 9. M. Kumar, Locally dually flatness and locally projectively flatness of Matsumoto change
    with m-th root Finsler metrics, Journal of Finsler Geometry and its Applications, 2(1)
    (2021), 31-39.
  • 10. M. Matsumoto, On C-reducible Finsler-spaces, Tensor, N. S., 24 (1972), 29-37.
  • 11. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important
    tensors, J. Math. Kyoto Univ., 14(3) (1974), 477-498.
  • 12. M. Matsumoto, On Finsler spaces with 1-form metric II, Berwald-Moor’s metric L =
    (y1y2yn)1/n, Tensor N. S., 32 (1978), 275-278.
  • 13. S. Rani and G. Shanker, On S-curvature of a homogeneous Finsler space with Randers
    changed square metric, Facta Universitatis, Series: Mathematics and Informatics, 35
    (3) (2020), 673-691.
  • 14. S. Rani and G. Shanker, On CW-translations of a homogeneous Finsler space with (α, β)-
    metrics, Balkan Journal of Geometry and Its Applications, 26 (1) (2021), 58-68.
  • 15. S. Rani, G. Shanker, and K. Kaur, On the Ricci curvature of a homogeneous Finsler
    space with Randers change of square metric, Differential Geometry-Dynamical Systems,
    23 (2021), 204-220.
  • 16. G. Shanker and K. Kaur, Homogeneous Finsler space with infinite series (α, β)-metric,
    Applied Sciences, 21 (2019), 219-235.
  • 17. G. Shanker and S. Rani, On S-Curvature of a Homogeneous Finsler space with square
    metric, International Journal of Geometric Methods in Modern Physics, 17 (02) (2020),
    2050019 (16 pages).
  • 18. G. Shanker, S. Rani and K. Kaur, Dually flat Finsler spaces associated with Randers-β
    change, Journal of Rajasthan Academy of Physical Sciences, 18 (1-2) (2019), 95-106.
  • 19. G. Shanker, R. K. Sharma and R. D. S. Kushwaha, On the Matsumoto change of a Finsler
    space with mth root metric, Acta Matematica Academie Paedagogiace Nyiregyha´ziensis,
    32 (2) (2017), 255-264.
  • 20. Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chinese
    Annals of Mathematics, Series B, 27 (1) (2006), 73-94.
  • 21. C. Shibata, On invariant tensors of β−change of Finsler metrics, Journal of Mathematics
    of Kyoto University, 24 (1984), 163-188.
  • 22. H. Shimada, On Finsler spaces with the metric L = m√ai1i2...imyi1 yi2 ...yim, Tensor(N.S.), 33 (1979), 365-372.
  • 23. A. Tayebi and B. Najafi, On m-th root Finsler metrics, Journal of Geometry and Physics,
    61 (2011), 1479-1484.
  • 24. B. Tiwari and M. Kumar, On Randers change of a Finsler space with mth-root metric,
    International Journal of Geometric Methods in Modern Physics, 11 (10) (2014), 1450087
    (13 pages).
  • 25. C. Yu, On dually flat general (α, β)-metrics, Differential Geometry and its Applications,
    40 (2015), 111-122