Let (Mn,g) be a Riemannian manifold and TM its tangent bundle. In this paper, we determine the infinitesimal fiber-preserving paraholomorphically projective (IFPHP) transformations on TMwith respect to the Levi-Civita connection the deformed complete lift metric G=gC+(fg)V, where f is a nonzero differentiable function on Mn and gC and gV are the complete lift and the vertical lift of g on TM, respectively. Also, the infinitesimal complete lift, horizontal lift and vertical lift paraholomorphically projective transformations on (TM,Gf) are studied.
1. M.T.K. Abbassi and M. Sarih, On Riemannian g-natural metrics of the form ags + bgh + cgv on the tangent bundle of a Riemannian manifold (M, g), Mediterr. J. Math., 2 (2005), 19-43.
2. M.T.K. Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), 41 (2005), 71-92.
3. V. Cortes, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys. 028 (2004), 73 pp.
4. V. Cruceanu, P.M. Gadea and J. Munoz Masque, Para-Hermitian and Para-Kahler Manifolds. Quaderni Inst. Math. Messina, 2 (1995), 1-70.
5. F. Etayo and P. M. Gadea, Paraholomorphically projective vector field, An. St. Univ. ”Al. I. Cuza” Iasi Sect. a Mat.(N. S.) 38 (1992), 201-210.
6. M. Iscan and A. Magden, Infinitesimal paraholomorphically projective transformations on tangent bundles with diagonal lift connection, Differ. Geom. Dyn. Syst., 10 (2008), 170-177.
7. A. Gezer, On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), 345-350.
8. A. Gezer and M. Ozkan, Notes on the tangent bundle with deformed complete lift metric, Turkish J. Math., 38 (2014), 1038-1049.
9. M. Prvanovic, Holomorphically projective transformations in a locally product spaces, Math. Balkanica (N.S.) 1 (1971), 195-213.
10. Z. Raei, On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric, Journal of Finsler Geometry and its Applications, 2(1) (2021), 1-30.
11. P.K. Rasevskii, The scalar field in a stratified space. Trudy Sem. Vekt. Tenz. Anal., 6 (1948), 149-151.
12. A.A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties, Topology Appl., 154 (2007), 925-933.
13. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958) 338-358.
14. K. Yamauchi, On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds, Ann. Rep. Asahikawa Med. Coll., 16 (1995), 1-6.
15. K. Yano, The Theory of Lie Derivatives and Its Applications. Bibliotheca mathematica, North Holland Pub. Co., 1957.
16. K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
17. K. Yano and S. Kobayashi, Prolongation of tensor fields and connections to tangent bundles I, II, III, J. Math. Soc. Japan, 18 (1966), 194-210, 236-246, 19 (1967), 486-488.
Zohrehvand, M. (2021). IFPHP transformations on the tangent bundle with the deformed complete lift metric. Journal of Finsler Geometry and its Applications, 2(2), 103-113. doi: 10.22098/jfga.2021.9516.1050
MLA
Mosayeb Zohrehvand. "IFPHP transformations on the tangent bundle with the deformed complete lift metric", Journal of Finsler Geometry and its Applications, 2, 2, 2021, 103-113. doi: 10.22098/jfga.2021.9516.1050
HARVARD
Zohrehvand, M. (2021). 'IFPHP transformations on the tangent bundle with the deformed complete lift metric', Journal of Finsler Geometry and its Applications, 2(2), pp. 103-113. doi: 10.22098/jfga.2021.9516.1050
VANCOUVER
Zohrehvand, M. IFPHP transformations on the tangent bundle with the deformed complete lift metric. Journal of Finsler Geometry and its Applications, 2021; 2(2): 103-113. doi: 10.22098/jfga.2021.9516.1050