IFPHP transformations on the tangent bundle with the deformed complete lift metric

Document Type : Original Article

Author

Department of Mathematical Science and Statistics, Malayer University, Malayer, Iran. m.zohrehvand@malayeru.ac.ir

Abstract

Let (Mn,g) be a Riemannian manifold and TM its tangent bundle. In this paper, we determine the infinitesimal fiber-preserving paraholomorphically projective (IFPHP) transformations on TMwith respect to the Levi-Civita connection the deformed complete lift metric G=gC+(fg)V, where f is a nonzero differentiable function on Mn and gC and gV are the complete lift and the vertical lift of g on TM, respectively. Also, the infinitesimal complete lift, horizontal lift and vertical lift paraholomorphically projective transformations on (TM,Gf) are studied.

Keywords


  • 1. M.T.K. Abbassi and M. Sarih, On Riemannian g-natural metrics of the form ags +
    bgh + cgv on the tangent bundle of a Riemannian manifold (M, g), Mediterr. J. Math.,
    2 (2005), 19-43.
  • 2. M.T.K. Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian
    manifolds, Arch. Math. (Brno), 41 (2005), 71-92.
  • 3. V. Cortes, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean
    supersymmetry. I. Vector multiplets, J. High Energy Phys. 028 (2004), 73 pp.
  • 4. V. Cruceanu, P.M. Gadea and J. Munoz Masque, Para-Hermitian and Para-Kahler Manifolds. Quaderni Inst. Math. Messina, 2 (1995), 1-70.
  • 5. F. Etayo and P. M. Gadea, Paraholomorphically projective vector field, An. St. Univ.
    ”Al. I. Cuza” Iasi Sect. a Mat.(N. S.) 38 (1992), 201-210.
  • 6. M. Iscan and A. Magden, Infinitesimal paraholomorphically projective transformations
    on tangent bundles with diagonal lift connection, Differ. Geom. Dyn. Syst., 10 (2008),
    170-177.
  • 7. A. Gezer, On infinitesimal conformal transformations of the tangent bundles with the
    synectic lift of a Riemannian metric, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009),
    345-350.
  • 8. A. Gezer and M. Ozkan, Notes on the tangent bundle with deformed complete lift metric,
    Turkish J. Math., 38 (2014), 1038-1049.
  • 9. M. Prvanovic, Holomorphically projective transformations in a locally product spaces,
    Math. Balkanica (N.S.) 1 (1971), 195-213.
  • 10. Z. Raei, On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll
    metric, Journal of Finsler Geometry and its Applications, 2(1) (2021), 1-30.
  • 11. P.K. Rasevskii, The scalar field in a stratified space. Trudy Sem. Vekt. Tenz. Anal., 6
    (1948), 149-151.
  • 12. A.A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties,
    Topology Appl., 154 (2007), 925-933.
  • 13. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds,
    Tohoku Math. J., 10 (1958) 338-358.
  • 14. K. Yamauchi, On infinitesimal conformal transformations of the tangent bundles over
    Riemannian manifolds, Ann. Rep. Asahikawa Med. Coll., 16 (1995), 1-6.
  • 15. K. Yano, The Theory of Lie Derivatives and Its Applications. Bibliotheca mathematica,
    North Holland Pub. Co., 1957.
  • 16. K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New
    York, 1973.
  • 17. K. Yano and S. Kobayashi, Prolongation of tensor fields and connections to tangent
    bundles I, II, III, J. Math. Soc. Japan, 18 (1966), 194-210, 236-246, 19 (1967), 486-488.