S-Curvature of left invariant Randers metrics on some simple Lie groups

Document Type : Original Article

Author

Department of Mathematics, Isfahan University of Technology, Isfahan, 84156-83111-Iran. hossein.abedikarimi@gmail.com

Abstract

In this paper we study the Riemannian geometry of simple Lie groups SO(3,R), SL(2,R) and SO(1,3), equipped with a left invariant Riemannian metric. We consider left invariant Randers metrics induced by these left invariant Riemannian metrics. Then, in each case, we obtain the S-curvature and show that although these Randers metrics are not of Berwald or Douglas type but in the case of SO(3,R) it is of almost isotropic S-curvature. Finally, we give the S-curvature of left invariant Randers metrics on four-dimensional Einstein Lie groups.

Keywords


  • 1. H. Abedi Karimi and H.R. Salimi Moghaddam, On the Finsler Geometry of FourDimensional Einstein Lie Groups, Iran J Sci Technol Trans Sci, 43(2019), 1197-1202.
  • 2. G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel Pubishing
    Company, Dordrecht, Holland, (1985).
  • 3. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
    Springer-Verlag, (2000).
  • 4. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific, Singapore, (2005).
  • 5. S. Deng and Z. Hou, Invariant Randers metrics on homogeneous Riemannian manifolds,
    J. Phys.A Math.Gen, 37(2004), 4353-4360.
  • 6. S. Deng, Homogeneous Finsler Spaces, Springer, New York, (2012).
  • 7. K. Kaur and G. Shanker, On the geodesics of a homogeneous Finsler space with a special
    (α, β)-metric, Journal of Finsler Geometry and its Applications, 1(1) (2020), 26-36.
  • 8. L. Snobl and P. Winternitz, Classification and Identification of Lie Algebras, AMS ,
    USA, (2014).