A new non-Riemannian curvature related to the class of (α, β)-metrics

Document Type : Original Article

Authors

1 Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran. haji.badali@ubonab.ac.ir

2 Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab 5551395133, Iran. majidi.majidi.2020@gmail.com

Abstract

In this paper, we find a new non-Riemannian quantity for (α, β)-metrics that is closely related to the S-curvature. We call it the -curvature. Then, we show that an (α, β)-metric is Riemannian if and only if =0. For a Randers metric, we find the relation between S-curvature and S-curvature.

Keywords


  • 1. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler
    Spaces with Applications in Physics and Biology, FTPH 58, Kluwer Academic Publishers, 1993.
  • 2. S. B´acs´o and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of
    notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
  • 3. D. Bao and C. Robles, On Randers spaces of constant flag curvature, Rep. on Math.
    Phys. 51 (2003), 9-42.
  • 4. B. Bidabad and M. Rafie-Rad, Pure pursuit navigation on Riemannian manifolds, Nonlinear Analysis: Real World Applications, 10(3) (2009), 1265-1269.
  • 5. B. Bidabad and A. Tayebi, A classification of some Finsler connections, Publ. Math.
    Debrecen, 71(2007), 253-260.
  • 6. X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512.
  • 7. B. Najafi, Z. Shen and A. Tayebi , Finsler metrics of scalar flag curvature with special
    non-Riemannian curvature properties, Geometriae Dedicata, 131(2008), 87-97.
  • 8. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev,
    59 (1941), 195-199.
  • 9. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  • 10. Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Advances in Math. 128 (1997), 306-328.
  • 11. A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler geometry,
    Publ. Math. Debrecen, 72(2008), 1-15.
  • 12. A. Tayebi and M. Rafie Rad, S-curvature of isotropic Berwald metrics, Science in China,
    Series A: Math. 51(2008), 2198-2204.