Some properties of Sasaki metric on tangent bundle of Finsler manifold

Document Type : Original Article

Author

Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran. raei.zohre@gmail.com

Abstract

Let (M,F) be a Finsler manifold and G be the Sasaki-Finsler metric on TM. In this paper, we investigate some properties of Sasaki-Finsler metric which is pure with respect to some paracomplex structures on TM. Also, we show that the curvature tensor field of the Levi-Civita connection on (TM,G) is recurrent or pseudo symmetric if and only if (M,F) is locally Eulidean or locally Minkowski space.

Keywords


  • 1. K. Aso, Notes on some properties of the sectional curvature of the tangent bundle, Yokohama Math. J. 29(1981), 1-5.
  • 2. M.T.K Abbassi and M. Sarih, some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differ. Geom. Appl. 22(2005), 19-47.
  • 3. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry,
    Springer-Verlag, New York, 2000.
  • 4. A. Bejancu and H. Farran, A geometric characterization of Finsler manifold of constant
    curvature K = 1, Internal. J. Math. Math. Sci, 23(6) (2000) 399-407.
  • 5. A. Bejancu, and H. Farran, The scalar curvature of the tangent bundle of a Finsler
    manifold, Nouvelle srie, tome 89(103) (2011), 57-68.
  • 6. A. Bejancu, Tangent bundle and indicatrix bundle of a Finsler manifold, Kodai Math.
    J. 31(2008), 272-306.
  • 7. M. De Leon and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 1989.
  • 8. A. Gezer and M. Altunbas, Notes on the rescaled Sasaki type metric on the cotangent
    bundle, Acta Mathematica Scientia, 34(1) (2014), 162-174.
  • 9. A. Gezer, On the tangent bundle with deformed Sasaki metric, IEJG. 6(2) (2013), 19-31.
  • 10. S. Gudmundsson and E. Kappos, On the geometry of tangent bundles, Expo. Math.
    20(2002), 1-41.
  • 11. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a
    Riemannian manifold. J Reine Angew Math, 250(1971), 124-129.
  • 12. O. Kowalski and M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles, Bull. Tokyo Gakugei Univ. 4(40) (1988), 1-29.
  • 13. E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura.
    Appl. 4(150) (1988), 1-19.
  • 14. Z. Raei and D. Latifi, A classification of conformal vector fields on the tangent bundle,
    Ukrainian Mathematical Journal, 72(2020), 803-815.
  • 15. Z. Raei and D. Latifi, Curvatures of tangent bundle of Finsler manifold with CheegerGromoll metric, Matematicki Vesnik, 70(2018), 134-146.
  • 16. Z. Raei, On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll
    metric, Journal of Finsler Geometry and its Applications, 1(1) (2021), 1-30.
  • 17. A. A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties,
    Topology Appl., 154(4) (2007), 925-933.
  • 18. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds,
    Tohoku Math. J. 10(1958), 338-354.
  • 19. J. Wang and Y. Wang, On the geometry of tangent bundles with the rescaled metric,
    arXiv:1104.5584v1.
  • 20. K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Dekker
    1973.
  • 21. B. Ye Wu, Some results on the geometry of tangent bundle of Finsler manifolds, Publ.
    Math. Debrecen. 3691(2007), 1-9.