Let (M,F) be a Finsler manifold and G be the Sasaki-Finsler metric on TM∼. In this paper, we investigate some properties of Sasaki-Finsler metric which is pure with respect to some paracomplex structures on TM∼. Also, we show that the curvature tensor field of the Levi-Civita connection on (TM,G) is recurrent or pseudo symmetric if and only if (M,F) is locally Eulidean or locally Minkowski space.
1. K. Aso, Notes on some properties of the sectional curvature of the tangent bundle, Yokohama Math. J. 29(1981), 1-5.
2. M.T.K Abbassi and M. Sarih, some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differ. Geom. Appl. 22(2005), 19-47.
3. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry, Springer-Verlag, New York, 2000.
4. A. Bejancu and H. Farran, A geometric characterization of Finsler manifold of constant curvature K = 1, Internal. J. Math. Math. Sci, 23(6) (2000) 399-407.
5. A. Bejancu, and H. Farran, The scalar curvature of the tangent bundle of a Finsler manifold, Nouvelle srie, tome 89(103) (2011), 57-68.
6. A. Bejancu, Tangent bundle and indicatrix bundle of a Finsler manifold, Kodai Math. J. 31(2008), 272-306.
7. M. De Leon and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 1989.
8. A. Gezer and M. Altunbas, Notes on the rescaled Sasaki type metric on the cotangent bundle, Acta Mathematica Scientia, 34(1) (2014), 162-174.
9. A. Gezer, On the tangent bundle with deformed Sasaki metric, IEJG. 6(2) (2013), 19-31.
10. S. Gudmundsson and E. Kappos, On the geometry of tangent bundles, Expo. Math. 20(2002), 1-41.
11. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. J Reine Angew Math, 250(1971), 124-129.
12. O. Kowalski and M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles, Bull. Tokyo Gakugei Univ. 4(40) (1988), 1-29.
13. E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl. 4(150) (1988), 1-19.
14. Z. Raei and D. Latifi, A classification of conformal vector fields on the tangent bundle, Ukrainian Mathematical Journal, 72(2020), 803-815.
15. Z. Raei and D. Latifi, Curvatures of tangent bundle of Finsler manifold with CheegerGromoll metric, Matematicki Vesnik, 70(2018), 134-146.
16. Z. Raei, On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric, Journal of Finsler Geometry and its Applications, 1(1) (2021), 1-30.
17. A. A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties, Topology Appl., 154(4) (2007), 925-933.
18. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10(1958), 338-354.
19. J. Wang and Y. Wang, On the geometry of tangent bundles with the rescaled metric, arXiv:1104.5584v1.
20. K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Dekker 1973.
21. B. Ye Wu, Some results on the geometry of tangent bundle of Finsler manifolds, Publ. Math. Debrecen. 3691(2007), 1-9.
Raei, Z. (2021). Some properties of Sasaki metric on tangent bundle of Finsler manifold. Journal of Finsler Geometry and its Applications, 2(2), 23-42. doi: 10.22098/jfga.2021.1366
MLA
Zohre Raei. "Some properties of Sasaki metric on tangent bundle of Finsler manifold", Journal of Finsler Geometry and its Applications, 2, 2, 2021, 23-42. doi: 10.22098/jfga.2021.1366
HARVARD
Raei, Z. (2021). 'Some properties of Sasaki metric on tangent bundle of Finsler manifold', Journal of Finsler Geometry and its Applications, 2(2), pp. 23-42. doi: 10.22098/jfga.2021.1366
VANCOUVER
Raei, Z. Some properties of Sasaki metric on tangent bundle of Finsler manifold. Journal of Finsler Geometry and its Applications, 2021; 2(2): 23-42. doi: 10.22098/jfga.2021.1366