In this paper relation between pseudoconvex and quasi convex functions is introduced in the context of Riemannian manifolds. In this setting first order characterization of pseudoconvex (strongly pseudoconvex) functions is obtained.
1. A. Barani, Convexity of the solution set of a pseudoconvex inequality in Riemannian manifolds, Numer. Funct. Anal. Opt. 39(2018), 588-599.
2. A. Cambini, L. Martein: Generalized Convexity and Optimization, Lecture Notes in Economics and Mathematical Systems, 616. Springer, Berlin (2009).
3. S. Chen and C. Fang, Vector variational inequality with pseudoconvexity on Hadamard manifolds, Optimization, 65(2016), 2067-2080.
4. S. Chen, Existence results for vector variational inequality problems on Hadamard manifolds, Optim. Lett. https://doi.org/10.1007/s11590-020-01562-7, (2020).
5. J. X. Da Cruz Neto, O. P. Ferreira and L. R. Lucambio Perez, Contributions to the study of monotone vector fields, Acta Math. Hungar. 94(2002), 307-320.
6. O.P. Ferreira and P.R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization 51(2002), 257-270.
7. O.P. Ferreira, L. R. Lucambio P´erez, S. Z. N´emeth,Singularities of monotone vector fields and an exteragradeient-type algorithm, J. Glob. Optim., 31(2005), 133-151.
8. S. Hosseini, M.R. Pouryayevali, On the metric projection onto prox-regular subsets of Riemannian manifolds, Proc. Amer. Math. Soc. 141(2013), 233-244.
9. V.I. Ivanov, Optimality Conditions and Characterizations of the Solution sets in Generalized Convex Problems and Variational inequalities, J. Optim. Theory Appl. 158(2013), 65-84.
10. V.I. Ivanov, Characterizations of pseudoconvex functions and semistrictly quasiconvex ones, J. Glob. Optim. 57(2013), 677-693.
11. V.I. Ivanov, A first ordered Characterizations of the strongly pseudoconvex functions, Proceedings of the Thirty Seventh Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2-6, (2008).
12. E.E. Levi, Studi sui punti singolari essenziali delle funzioni analitiche di due o pi variabili complesse. Ann. Mat. Pura Appl., 17(1910), 61-68.
13. S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, Graduate Text in Mathematics, 191, New York, (1999).
14. O.L. Mangasarian, Pseudoconvex functions. SIAM J. Control 3(1965), 281-290.
15. S. Z. N´emeth, Monotone vector fields, Publicationes Mathematics 54(1999), 437-449.
16. S. Z. N´emeth, Five kinds of monotone vector fields, Publicationes Mathematics. 9(1999), 417-428.
17. C. Olsson and F. Kahl, Generalized Convexity in Multiple View Geometry, J. Math. Imaging Vis, 38(2010), 35-51.
18. T. Rapsc´ak, Smooth Nonlinear Optimization in Rn. Kluwer Academic, New York, (1997).
19. T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, (1992).
20. H. Tuy, Sur les ingalits linaires. Colloq. Math. 13(1964), 107-123.
21. G. Tang, L. Zhou, N. Huang, The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds, Optim. Lett. 7(2013), 779-790 .
22. G. Tang and Nan-jing Huang, Korpelevichs method for variational inequality problems on Hadamard manifolds, J. Glob. Optim. 54 (2012), 493-509.
23. C. Udriste, Convex functions and Optimization methods on Riemannian Manifolds, Kluwer Academic Publishers, 1994.
Barani, A. (2021). On pseudoconvex functions in Riemanian manifolds. Journal of Finsler Geometry and its Applications, 2(2), 14-22. doi: 10.22098/jfga.2021.1365
MLA
Ali Barani. "On pseudoconvex functions in Riemanian manifolds", Journal of Finsler Geometry and its Applications, 2, 2, 2021, 14-22. doi: 10.22098/jfga.2021.1365
HARVARD
Barani, A. (2021). 'On pseudoconvex functions in Riemanian manifolds', Journal of Finsler Geometry and its Applications, 2(2), pp. 14-22. doi: 10.22098/jfga.2021.1365
VANCOUVER
Barani, A. On pseudoconvex functions in Riemanian manifolds. Journal of Finsler Geometry and its Applications, 2021; 2(2): 14-22. doi: 10.22098/jfga.2021.1365