A note on entropy of finitely ergodic compact topological dynamical systems

Document Type : Original Article

Authors

1 Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran. E-mail: m10.rahimi@gmail.com

2 Department of Basic Science, Jundi-Shapur University of Technology, Dezful, Iran. E-mail: amirassari@jsu.ac.ir

Abstract

In this paper, using a map on the product space, we define a linear functional on a Hilbert space and we extract the metric entropy of a system as the operator norm of the linear functional. This follows an approach which considers the entropy of a dynamical system as a linear operator.

Keywords


  • 1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer.
    Math. Soc. 114 (1965), 309-319.
  • 2. R. Bowen, Invariant measures for Markov maps of the interval. Comm. Math. Physics
    69 (1976), 1-17.
  • 3. L. Breiman, The individual theorem of information theory. Ann. of Math. Stat. 28 (1957),
    809-811, errata 31 (1960), 809-810.
  • 4. M. Brin and A. Katok, On local entropy in geometric dynamics, 30-38. New York,
    Springer-Verlag, 1983 (Lecture Notes in Mathematics 1007).
  • 5. E. I. Dinaburg, The relation between toological entropy and metric entropy, Soviet Math.
    11 (1970), 13-16.
  • 6. T. Downarowicz and B. Frej, Measure-theoretic and topological entropy of operators on
    function spaces, Ergodic Theory Dynam. Systems, 25(2) (2005), 455-481.
  • 7. D. Dumitrescu, “Entropy of fuzzy dynamical systems, Fuzzy Sets and Systems. 70 (1995),
    45-57.
  • 8. B. Frej, Maliˇcky-Rieˇcan’s entropy as a version of operator entropy, Fundamenta Mathematicae. 189 (2006), 185-193.
  • 9. T. Hudetz, Space-time dynamical entropy for quantum systems, Lett. Math. Phys. 16
    (1988), 151-161.
  • 10. T. Hudetz, Algebraic topological entropy, Nonlinear Dynamics and Quantum Dynamical
    Systems, Akademie Verlag: Berlin, Germany, 1990, 27-41.
  • 11. B. Kami´nski and J. S. Lazaro, A note on the entropy of a doubly stochastic operator,
    Colloquium Mathematicum, 84/85 (1) (2000), 245-254.
  • 12. A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces , Doklady of Russian Academy of Sciences, 119 (1958), 861-864.
  • 13. R. Ma˜n´e, Ergodic theory and differentiable dynamics. Springer-Verlag, Berlin, Heidelberg, New York, 1987.
    Entropy of compact topological systems 149.
  • 14. R. Ma˜n´e, On the topological entropy of geodesic flows. J. Differential Geometry, 45
    (1997), 74-93.
  • 15. B. McMillan, The basic theorems of information theory. Ann. of Math. Statistics 24
    (1953), 196-219.
  • 16. S. Newhouse, Entropy and Volume, Ergod. Th. Dynam. Sys., 8 (1988), 283-299.
  • 17. Ya. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math.
    Surveys 32 (1977), 54-114.
  • 18. R. Phelps, Lectures on Choquet’s Theorem, Van Nostrand, Princeton, N. J., 1966.
  • 19. M. Rahimi and A. Riazi, Entropy operator for continuous dynamical systems of finite
    topological entropy, Bull. Iran. Math. Soc. 38(4)(2012), 883-892.
  • 20. M. Rahimi and A. Riazi, Entropy functional for continuous systems of finite entropy,
    Acta Mathematica Scientia, 32B(2) (2012), 775-782.
  • 21. M. Rahimi and M. M. Anjedani, A local view on the Hudetz correction of the Yager
    entropy of dynamical systems, International Journal of General Systems, 48(3) (2019),
    321-333.
  • 22. M. Rahimi, A Spectral Representation for the Entropy of Topological Dynamical Systems,
    J. Dyn. Control. Syst. 27 (2021), 573-584.
  • 23. D. Ruelle, An inequality for the entropy of differential maps. Bol. Soc. Bras. de Mat. 9
    (1978), 83-87.
  • 24. C. Shannon, A mathematical theory of communication. Bell Syst. Tech. Journal 27 (1948)
    379-423, 623-656.
  • 25. Ya. G. Sinai, On the notion of entropy of a dynamical system, Doklady of Russian
    Academy of Sciences, 124 (1959), 768-771.
  • 26. P. Walters, An introduction to ergodic theory, Springer-Verlag, 1982.
  • 27. Y. Yomdin, Volume growth and entropy, Israel J. of Math. 57 (1987), 285-300.