On a class of Finsler metrics of scalar flag curvature defined by the Euclidean metric and related ‎‎1‎‎-forms

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran. E-mail: m.gabrani@urmia.ac.ir

Abstract

‎‎In this paper, we study a class of Finsler metrics called general spherically symmetric Finsler metrics which are defined by the Euclidean metric and related ‎‎1‎‎-forms. For a class of the metrics in ‎R‎n‎‎, we prove that it is projectively flat if and only if it is of scalar flag curvature.‎

Keywords


  • 1. D. Bao, C. Robles, and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Diff.
    Geom. 66(3) (2004), 377-435.
  • 2. S. S. Chern and Z. Shen, Riemannian-Finsler Geometry. World Scientific Publisher,
    Singapore (2005).
  • 3. X. Cheng and Z Shen, Randers metrics of scalar flag curvature, J. Aust. Math. Soc. 87
    (2009), 359-370.
  • 4. G. Cai, C. Qiu and X. Wang, On some classes of projectively flat Finsler metrics with
    constant flag curvature, Differ. Geom. Appl. 68 (2020), 101579.
  • 5. J. Douglas, The general geometry of paths, Annals of Mathematics. (1927), 143-168.
  • 6. M. Gabrani, B. Rezaei, and E. S. Sevim, General spherically symmetric Finsler metrics
    with constant Ricci and flag curvature, Differ. Geom. Appl. 76 (2021), 101754.
  • 7. M. Gabrani, B. Rezaei, and E. S. Sevim, A class of Finsler metrics with almost vanishing
    H-and Ξ-curvatures, Results in Mathematics. 76(1) (2021), 1-17.
  • 8. M. Gabrani and E. S. Sevim, On projectively flat Finsler warped product metrics with
    isotropic E-curvature, Journal of Finsler Geometry and its Applications, 1(2) (2020),
    54-62.
  • 9. L. Huang and X. Mo, On spherically symmetric Finsler metrics of scalar curvature, J.
    Geom. Phys. 62 (2012), 2279-2287.
  • 10. B. Ludwig, ber dien-dimensionalen Geometrien konstanter Krmmung, in denen die Geraden die krzesten sind, Mathematische Zeitschrift. 30(1) (1929), 449-469.
  • 11. H. Liu and X. Mo, Examples of Finsler metrics with special curvature properties, Math.
    Nachr. 13 (2015), 1527-1537.
  • 12. W. Liu and B. Li, Projectively flat Finsler metrics defined by the Euclidean metric and
    related 1-forms, Differ. Geom. Appl. 46 (2016), 14-24.
  • 13. X. Mo, Finsler metrics with constant (or scalar) flag curvature, Proc. Indian Acad. Sci.
    (Math. Sci.) 122(3) (2012), 411-427.
  • 14. X. Mo, On some Finsler metrics of constant (or scalar) flag curvature, Houston J. Math.
    38 (2012), 41-54.
  • 15. B. Rezaei and M. Gabrani, A class of Berwaldian Finsler metrics, Acta Mathematica
    Academiae Paedagogicae Ny´ıregyh´aziensis, 107(3) (2017), 259-270.
  • 16. B. Rezaei and M. Gabrani, A class of Finsler metrics with quadratic curvatures, Bull.
    Iran. Math. Soc. 46 (2020), 53-65.
  • 17. Z. Shen, Projectively flat Finsler metrics of constant flag curvature, Transactions of the
    American Mathematical Society, 355(4) (2003), 1713-1728.
  • 18. A. Tayebi, M. Bahadori and H. Sadeghi. On spherically symmetric Finsler metrics with
    some non-Riemannian curvature properties, J. Geom. Phys. 163 (2021), 104125.
  • 19. A. Tayebi and M. Shahbazi Nia. A new class of projectively flat Finsler metrics with
    constant flag curvature K = 1, Differ. Geom. Appl. 41 (2015), 123–133.
  • 20. X. Wang, W. Liu and B. Li, Dually flat general spherically symmetric Finsler metrics,
    Sci. China. Math. 61(4) (2018), 769-782.
  • 21. Q. Xia, On a class of Finsler metrics of scalar flag curvature, Results in Mathematics.
    71(1-2) (2017), 483-507.
  • 22. H. Zhu, A class of Finsler metrics of scalar flag curvature. Differ. Geom. Appl. 40 (2015),
    321-331.
  • 23. L. Zhou, Projective spherically symmetric Finsler metrics with constant flag curvature
    in Rn, Geom Dedicata. 158(1) (2012), 353-364.
  • 24. H. Zhu and H. Zhang, Projective Ricci flat spherically symmetric Finsler metrics, Internat. J. Math. 29(11) (2018), 1850078.