Let F be a (reversible) Finsler metric on a Riemannian space (M, α) of positive (or negative) sectional curvature. Suppose that the Ricci curvature of F is horizontally constant along Finslerian geodesics. Then we show that F is a Ricci-quadratic Finsler metric.
1. H. Akbar-Zadeh, Sur les espaces de Finsler a` courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5), 80(1988), 271-322.
2. H. Akbar-Zadeh, Generalized Einstein manifolds, J. Geom. Phys. 17 (1995) 342-380.
3. S. B´acs´o and M. Matsumoto, Finsler spaces with h-curvature tensor H dependent on position alone, Publ. Math. Debrecen, 55(1999), 199-210.
4. S. B´acs´o and M. Matsumoto, Randers spaces with the h-curvature tensor H dependent on position alone, Publ. Math. Debrecen. 57(2000), 185-192.
5. D. Bao, C. Robles and Z. Shen, Zermelo Navigation on Riemannian manifolds, J. Diff. Geom. 66(2004), 391-449.
6. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S 3,J. London Math. Soc. 66(2002), 453-467.
7. S. W. Hawking, American Astronomical Society 544 (1966).
8. H. Isikawa, Note on Finslerian Relativity, J. Math. Phys. 22 No.5 (1981), 995.
9. B. Li and Z. Shen, On Randers metrics of quadratic Riemann curvature, Int. Jour. Math. 20(2009), 369-376.
10. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. 59(1941), 195-199.
11. B. Bidabad and M. Rafie-Rad, Pure pursuit navigation on Riemannian manifolds, Nonlinear Analysis, 10(2009), 1265-1269.
12. D. Latifi and A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys. 57 (2006) 357-366.
13. M. Matsumoto, A slope of a hill is a Finsler surface with respect to a time measure, J. Math. Kyoto. Univ. 29(1980), 17-25.
14. X. Mo, On the non-Riemannian quantity H of a Finsler metric, Differential Geometry and its Applications 27 (2009), 7-14.
15. S. Numata, On Landsberg spaces of scalar curvature, J. Korea Math. Soc. 12(1975), 97-100.
16. B. Najafi, B. Bidabad and A. Tayebi, On R-quadratic Finsler Metrics, Iranian Journal of Science and Technology, Trans A, Vol 31, No A4 (2007), 439-443.
17. B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
18. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
19. Z. Shen, Lectures on Finsler Geometry, World Scientific Publishers, 2001.
20. Z. Shen, On R-quadratic Finsler spaces, Publ. Math. Debrecen. 58(2001), 263-274.
21. H. Shimada and S.V. Sabau, An introduction to Matsumoto metric, Nonlinear Analysis: RWA. 63(2005) 165-168.
22. G. Stephenson, La g´eometrie de Finsler et les th´eories du champ unifi´e, Annales de l’I.H.P, tome. 15, no.3, (1957), 205-215.
23. P. C. Stravinos, On the Generalized Metric Structure of Space-Time: Finslerian Anisotropic Gravitational Field, Journal of Physics: Conference Series. 8 (2005), 49-57.
24. P. C. Stavrinos and F. I. Diakogiannis, Gravitation and Cosmology, 10(4) (2005) 1-11.
25. E.S. Sevim and M. Gabrani, On H-curvature of Finsler warped product metrics, Journal of Finsler Geometry and its Applications, 1(1) (2020), 37-44.
26. A. Tayebi, E. Peyghan and H. Sadeghi, On Matsumoto-type Finsler metrics, Nonlinear Analysis: RWA, 13(2012), 2556-2561.
27. S.I. Vacaru, Locally Anisotropic Kinetic Processes and Thermodynamics in Curved Spaces, Annals of Physics, 290 (2001), 83-123.
Shirafkan, A. (2021). On a class of Ricci-quadratic Finsler metrics. Journal of Finsler Geometry and its Applications, 2(1), 96-107. doi: 10.22098/jfga.2021.1267
MLA
Azadeh Shirafkan. "On a class of Ricci-quadratic Finsler metrics", Journal of Finsler Geometry and its Applications, 2, 1, 2021, 96-107. doi: 10.22098/jfga.2021.1267
HARVARD
Shirafkan, A. (2021). 'On a class of Ricci-quadratic Finsler metrics', Journal of Finsler Geometry and its Applications, 2(1), pp. 96-107. doi: 10.22098/jfga.2021.1267
VANCOUVER
Shirafkan, A. On a class of Ricci-quadratic Finsler metrics. Journal of Finsler Geometry and its Applications, 2021; 2(1): 96-107. doi: 10.22098/jfga.2021.1267