On the existence of 3-dimensional Berwald manifolds

Document Type : Original Article

Author

Department of Mathematical Science, Faculty of Mathematical Science and Statistics, Malayer University, Malayer, Iran. Email: m.zohrehvand@malayeru.ac.ir

Abstract

In this paper, we prove that there is not exists non-Riemannian 3-dimensional Berwald manifold with constant main scalars.

Keywords


  • 1. M. Amini, On weakly Landsberg 3-dimensional Finsler spaces, Journal of Finsler
    Geometry and its Applications, 1(2) (2020), 63-72.
  • 2. Z. N. Chetyrkina, Homothetically moving three-dimensional Randers spaces, Vestsi
    Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 138(1981), 43-51.
  • 3. A. Heydari, On semi C-reducible Finsler spaces, Journal of Finsler Geometry and its
    Applications, 1(2) (2020), 130-142.
  • 4. Y. Ichijy¯o, Finsler spaces modeled on a Minkowski space, J. Math. Kyoto. Univ.
    16(1976), 639-652.
  • 5. F. Ikeda, On three-dimensional conformally flat Finsler spaces, 4th International
    Conference on Differential Geometry and its Applications (Tsukuba, 1996). Tensor
    (N.S.), 59(1998), 7176.
  • 6. F. Ikeda, On relations of main scalars between a three-dimensional Finsler space and
    its hypersurface, Tensor (N.S.), 56(1995), 193198.
  • 7. F. Ikeda, On some properties of three-dimensional Finsler spaces, Tensor (N.S.),
    55(1994), 66-73.
  • 8. F. Ikeda, On three-dimensional Finsler spaces with the nonzero constant unified main
    scalar, Tensor (N.S.), 50 (1991), 276-280.
  • 9. H. Kawaguchi, On Finsler spaces with the vanishing second curvature tensor, Tensor
    (N.S.), 26(1972), 250-254.
  • 10. S. Kikuchi, On the condition that a Finsler space be conformally flat, Tensor (N.S.),
    55(1994), 97-100.
  • 11. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
  • 12. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars,
    Demonst. Math, 6(1973), 223-251.
  • 13. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars and
    its applications, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45(1) (1999), 115-140.
  • 14. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys.,
    31(1992), 43-84.
  • 15. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces,
    Tensor. N. S. 32(1978), 225-230.
  • 16. M. Matsumoto, V-transformations of Finsler spaces. I. Definition, infinitesimal
    transformations and isometries, J. Math. Kyoto Univ. 12(1972), 479-512.
  • 17. M. Matsumoto, On three-dimensional Finsler spaces satisfying the T- and Bpconditions, Tensor (N.S.), 29(1975), 13-20.
  • 18. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨
    Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
  • 19. T. N. Pandey, B. N. Prasad and V. K. Chaubey, Three-dimensional Finsler spaces
    with (α, β)-metric, Aligarh Bull. Math. 28(2009), 51-55.
  • 20. B. N. Prasad, T. N. Pandey and M. K. Singh, Three dimensional conformally flat
    Landsberg and Berwald spaces, J. Int. Acad. Phys. Sci. 13(2009), 299-309.
  • 21. Z. I. Szab´o, Positive definite Berwald spaces. Structure theorems on Berwald spaces,
    Tensor (N.S.), 35(1981), 25-39.
  • 22. Z. I. Szab´o, Berwald metrics constructed by Chevalley’s polynomials, Preprint
    arXiv:math.DG/0601522 (2006).
  • 23. A. Tayebi and F. Eslami, Some results on 3-dimensional Finsler manifolds, Global
    Journal. Advanced. Research. Classical and Modern Geometries, 8(2019), 26-32.
  • 24. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-metrics,
    Publ. Math. Debrecen. 96(2020), 45-62.