In this paper, we study the class of conformally flat cubic (α, β)-metrics. We prove that every conformally flat cubic (α, β)-metric with relatively isotropic mean Landsberg curvature must be either Riemannian metrics or locally Minkowski metrics.
1. P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993.
2. G.S. Asanov, Finslerian metric functions over product R × M and their potential applications, Rep. Math. Phys. 41(1998), 117-132.
3. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen, 72(2008), 475-485.
4. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientiflc, Singapore, 2005.
5. B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A, 50(2007), 75-85.
6. T. Tabatabaeifar, On generalized 4-th root Finsler metrics, Journal of Finsler Geometry and its Applications, 1(1) (2020), 54-59.
7. A. Tayebi, On generalized 4-th root metrics of isotropic scalar curvature, Mathematica Slovaca, 68(2018), 907-928.
8. A. Tayebi and B. Najafi, On m-th root Finsler metrics, J. Geom. Phys. 61(2011), 1479- 1484.
9. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I. 349(2011), 691-693.
10. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ. Geom. Appl. 62(2019), 253-266.
11. A. Tayebi and M. Shahbazi Nia, A new class of projectively flat Finsler metrics with constant flag curvature K = 1, Differ. Geom. Appl. 41(2015), 123-133
Amini, M. (2021). On conformally flat cubic (α, β)-metrics. Journal of Finsler Geometry and its Applications, 2(1), 75-85. doi: 10.22098/jfga.2021.1265
MLA
Marzeiya Amini. "On conformally flat cubic (α, β)-metrics", Journal of Finsler Geometry and its Applications, 2, 1, 2021, 75-85. doi: 10.22098/jfga.2021.1265
HARVARD
Amini, M. (2021). 'On conformally flat cubic (α, β)-metrics', Journal of Finsler Geometry and its Applications, 2(1), pp. 75-85. doi: 10.22098/jfga.2021.1265
VANCOUVER
Amini, M. On conformally flat cubic (α, β)-metrics. Journal of Finsler Geometry and its Applications, 2021; 2(1): 75-85. doi: 10.22098/jfga.2021.1265