The class of L-reducible Finsler metric was introduced by Matsumoto as a generalization of Randers metrics. One open problems in Finsler Geometry is to find a L-reducible metric which is not of Randers-type. Let (M,F) be a compact 3-dimensional L-reducible metric. Suppose that F has constant relatively isotropic mean Landsberg curvature. Then we show that F reduces to a Randers metric.
1. M. Amini, On weakly Landsberg 3-dimensional Finsler spaces, Journal of Finsler Geometry and its Applications, 1(2) (2020), 63-72.
2. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlage, 2000.
3. D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geometry, 66(2004), 377-435.
4. S. Beizavi, On L-reducible Finsler manifolds, Journal of Finsler Geometry and its Applications, 1(2) (2020), 73-82.
5. M. Hashiguchi and Y. Ichijy¯o, On some special (α, β)-metrics, Rep. Fac. Sci., Kagoshima Univ. 8(1975), 39-46.
6. R. S. Ingarden, Uber die Einbetting eines Finslerschen Rammes in einan ¨ Minkowskischen Raum, Bull. Acad. Polon. Sci. 2(1954), 305-308.
7. M. A. Javaloyes and H. Vit´orio, Zermelo navigation in pseudo-Finsler metrics, arXiv:1412.0465, 2014.
8. M. Ji and Z. Shen, On strongly convex indicatrices in Minkowski geometry, Canad. Math. Bull. 45(2) (2002), 232-246.
9. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
10. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars, Demonst. Math, 6(1973), 223-251.
11. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars and its applications, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45(1) (1999), 115-140.
12. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys., 31(1992), 43-84.
13. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor. N. S. 32(1978), 225-230.
14. M. Matsumoto and H. Shimada, On Finsler spaces with the curvature tensors Phijk and Shijk satisfying special conditions, Rep. Math. Phys., 12(1977), 77-87.
15. X. Mo and L. Huang, On characterizations of Randers norms in a Minkowski space, Internat. J. Math., 21(2010), 523-535.
16. X. Mo and Z. Shen, On negatively curved Finsler manifolds of scalar curvature, Canad. Math. Bull., 48(1) (2005), 112-120.
17. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨ Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
18. K. Nomizu and T. Sasaki, Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, Vol. 111. Cambridge University Press, Cambridge (1994).
19. B.N. Prasad, Finsler spaces with the torsion tensor Pijk of a special form, Indian. J. Pur. Appl. Math. 11(1980), 1572-1579.
20. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. 59(1941), 195-199.
21. A. Tayebi and B. Najafi, Some curvature properties of (α, β)-metrics, Bulletin Mathematique de la Societe des Sciences Math de Roumanie, Tome 60(108) No. 3, (2017), 277-291.
22. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)- mertrics, Publ. Math. Debrecen, 96 (2020), 45-62.
23. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen. 82(2) (2013), 461-471.
24. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math., 114(1) (2015), 67-79.
25. L. Yan, On characterizations of some general (α, β)-norms in a Minkowski space, arXiv:1505.00554v1, 2015
Ghasemi, A. (2021). On compact L-reducible Finsler manifolds. Journal of Finsler Geometry and its Applications, 2(1), 63-74. doi: 10.22098/jfga.2021.1264
MLA
Asmaa Ghasemi. "On compact L-reducible Finsler manifolds", Journal of Finsler Geometry and its Applications, 2, 1, 2021, 63-74. doi: 10.22098/jfga.2021.1264
HARVARD
Ghasemi, A. (2021). 'On compact L-reducible Finsler manifolds', Journal of Finsler Geometry and its Applications, 2(1), pp. 63-74. doi: 10.22098/jfga.2021.1264
VANCOUVER
Ghasemi, A. On compact L-reducible Finsler manifolds. Journal of Finsler Geometry and its Applications, 2021; 2(1): 63-74. doi: 10.22098/jfga.2021.1264