On compact L-reducible Finsler manifolds

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Hormozgan Bandar-Abbas, Iran E-mail: ghasemi.asmaa@gmail.com

Abstract

The class of L-reducible Finsler metric was introduced by Matsumoto as a generalization of Randers metrics. One open problems in Finsler Geometry is to find a L-reducible metric which is not of Randers-type. Let  (M,F) be a compact 3-dimensional L-reducible metric. Suppose that F has constant relatively isotropic mean Landsberg curvature. Then we show that F reduces to a Randers metric.

Keywords


  • 1. M. Amini, On weakly Landsberg 3-dimensional Finsler spaces, Journal of Finsler
    Geometry and its Applications, 1(2) (2020), 63-72.
  • 2. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
    Springer-Verlage, 2000.
  • 3. D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J.
    Differential Geometry, 66(2004), 377-435.
  • 4. S. Beizavi, On L-reducible Finsler manifolds, Journal of Finsler Geometry and its
    Applications, 1(2) (2020), 73-82.
  • 5. M. Hashiguchi and Y. Ichijy¯o, On some special (α, β)-metrics, Rep. Fac. Sci.,
    Kagoshima Univ. 8(1975), 39-46.
  • 6. R. S. Ingarden, Uber die Einbetting eines Finslerschen Rammes in einan ¨
    Minkowskischen Raum, Bull. Acad. Polon. Sci. 2(1954), 305-308.
  • 7. M. A. Javaloyes and H. Vit´orio, Zermelo navigation in pseudo-Finsler metrics,
    arXiv:1412.0465, 2014.
  • 8. M. Ji and Z. Shen, On strongly convex indicatrices in Minkowski geometry, Canad.
    Math. Bull. 45(2) (2002), 232-246.
  • 9. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
  • 10. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars,
    Demonst. Math, 6(1973), 223-251.
  • 11. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars and
    its applications, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45(1) (1999), 115-140.
  • 12. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys.,
    31(1992), 43-84.
  • 13. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces,
    Tensor. N. S. 32(1978), 225-230.
  • 14. M. Matsumoto and H. Shimada, On Finsler spaces with the curvature tensors Phijk
    and Shijk satisfying special conditions, Rep. Math. Phys., 12(1977), 77-87.
  • 15. X. Mo and L. Huang, On characterizations of Randers norms in a Minkowski space,
    Internat. J. Math., 21(2010), 523-535.
  • 16. X. Mo and Z. Shen, On negatively curved Finsler manifolds of scalar curvature,
    Canad. Math. Bull., 48(1) (2005), 112-120.
  • 17. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨
    Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
  • 18. K. Nomizu and T. Sasaki, Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, Vol. 111. Cambridge University Press, Cambridge (1994).
  • 19. B.N. Prasad, Finsler spaces with the torsion tensor Pijk of a special form, Indian.
    J. Pur. Appl. Math. 11(1980), 1572-1579.
  • 20. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys.
    Rev. 59(1941), 195-199.
  • 21. A. Tayebi and B. Najafi, Some curvature properties of (α, β)-metrics, Bulletin Mathematique de la Societe des Sciences Math de Roumanie, Tome 60(108) No. 3, (2017), 277-291.
  • 22. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-
    mertrics, Publ. Math. Debrecen, 96 (2020), 45-62.
  • 23. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen. 82(2) (2013), 461-471.
  • 24. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math., 114(1) (2015), 67-79.
  • 25. L. Yan, On characterizations of some general (α, β)-norms in a Minkowski space,
    arXiv:1505.00554v1, 2015