Finsler metrics with bounded Cartan torsion

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran E-mail: sadeghihassan64@gmail.com

Abstract

The norm of Cartan torsion plays an important role for studying of immersion theory in
Finsler geometry. In this paper, we find necessary and sufficient condition under which
a class of Finsler metrics defined by a Riemannian metric and a 1-form on a manifold
has bounded Cartan torsion.

Keywords


  • 1. S. B´acs´o, X. Cheng, and Z. Shen, Curvature properties of (α, β)-metrics, Adv. Stud.
    Pure. Math. Soc. Japan. 48(2007), 73-110.
  • 2. D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
    Springer, 2000.
  • 3. D. Bao and S. S. Chern, A note on the Gauss-Bonnet theorem for Finsler spaces, Ann.
    Math. 143(1996), 233252.
  • 4. L. Berwald, Uber die ¨ n-dimensionalen Geometrien konstanter Kr¨ummung, in denen die
    Geraden die k¨urzesten sind, Math. Z. 30(1929), 449-469.
  • 5. D. Burago and S. Ivanov, Isometric embedding of Finsler manifolds, Algebra i Analiz, 5
    (1993), 179-192.
  • 6. E. Cartan, les spaces de Finsler. Actualites Scientifiques et industrilles, no. 79, Hermann,
    Paris, 1934.
  • 7. X. Cheng, Z. Shen and Y. Tian, A class of Einstein (α, β)-metrics, Israel J. Math,
    192(2012), 221-249.
  • 8. P. Finsler, Uber Kurven und Fl¨achen in allgemeinen R¨aumen ¨ . Verlag Birkh¨auser, Basel,
    1951.
  • 9. R. S. Ingarden, Uber die Einbetting eines Finslerschen Rammes in einan Minkowskischen ¨
    Raum, Bull. Acad. Polon. Sci. III, 2(1954), 305-308.
  • 10. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
    43-84.
  • 11. X. Mo and L. Zhou, A class of Finsler metrics with bounded Cartan torsion, Canad.
    Math. Bull. 53(2010), 122-132.
  • 12. J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math. 73(1957), 20-37.
  • 13. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β)-metrics, Journal of
    Finsler Geometry and its Applications, 1(1) (2020), 66-72.
  • 14. Z. Shen, On a class of Landsberg metrics in Finsler geometry, Canadian. J. Math.
    61(2009), 1357-1374.
  • 15. Z. Shen, On Finsler geometry of submanifolds, Math. Ann. 311(1998), 549-576.
  • 16. Z. Shen, On R-quadratic Finsler spaces, Publ. Math. Debrecen, 58(2001), 263-274.
  • 17. Z. Shen, Projectively flat Finsler metrics of constant flag curvature, Trans. Amer. Math.
    Soc. 355(4) (2003), 1713-1728.
  • 18. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen,
    82(2013), 461-471.
  • 19. A. Tayebi and H. Sadeghi, Two classes of Finsler metrics with bounded Cartan torsions,
    Global Journal. Advanced. Research. Classical. Modern Geometries, 7(1) (2018), 23-36.
  • 20. G. Yang, On a class of singular Douglas and projectively flat Finsler metrics, Differ.
    Geom. Appl. 32(2014), 113-129.
  • 21. G. Yang, On a class of singular projectively flat Finsler metrics with constant flag curvature, Int. J. Math. 24(2013), 16 pages, 1350087.
  • 22. L. Zhou, A local classification of a class of (α, β)-metrics with constant flag curvature.
    Differ. Geom. Appl. 28(2010), 170-193