On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran. Email: raei.zohre@gmail.com

Abstract

Let (M, F) be a Finsler manifold and G be the Cheeger-Gromoll metric on TM induced
by F. We show that the curvature tensor field of the Levi-Civita connection on (TM,G) is
determined by the curvature tensor field of Vrãnceanu connection and some adapted tensor
fields on TM. Then we prove that (TM,G) is locally symmetric if and only if (M, F) is locally
Euclidean. Also, we express the flag curvature of the Finsler manifold (M, F).

Keywords


  • 1. M. Amini, On weakly Landsberg 3-dimensional Finsler spaces, Journal of Finsler Geometry and its Applications, 1(2) (2021), 63-72.
  • 2. K. Aso, Notes on some Properties of the Sectional Curvature of the Tangent Bundle,
    Yokohama Math. J. 29(1981), 1-5.
  • 3. M.T.K Abbassi and M. Sarih, On some hereditary properties of Riemannian g-nnatural
    metrics on tangent bundles of Riemannian manifolds, Differ. Geom. Appl. 22(2005)
    19-47.
  • 4. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry,
    Springer-Verlag, New York, 2000.
  • 5. A. Bejancu and H.R. Farran, A Geometric Characterization of Finsler Manifold of Constant Curvature K = 1, Internal. J. Math and Math.Sci, vol 23(6) (2000), 399-407.
  • 6. A. Bejancu, Tangent bundle and indicatrix bundle of a Finsler manifold, Kodai Math.
    J. 31(2008), 272-306.
  • 7. S. Gudmundsson and E. Kappos, On the geometry of tangent bundles, Expo. Math.
    20(2002), 1-41.
  • 8. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a
    Riemannian manifold. Journal. Reine. Angewandte. Mathematik, (1970), 124-129.
  • 9. O. Kowalski and M. Sekizawa, Natural transformations of Riemann-Jan metrics on
    manifolds to metrics on tangent bundles, Bull. Tokyo Gakugei Univ. 40 (1988), 1-29.
  • 10. E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura.
    Appl. 150(1988), 1-19.
  • 11. E. Peyghan and H. Nasrabadi and A. Tayebi, The Homogeneous Lift to the (1,1)-Tensor
    Bundle of a Riemannian Metric, Int. J. Geom. Meth. Modern. Phys, 10(4) (2013)
    1350006, 18 pages.
  • 12. E. Peyghan and H. Nasrabadi and A. Tayebi, Almost Paracontact Structure on Tangent
    Sphere Bundle, Int. J. Geom. Meth. Modern. Phys, 10(9) (2013), 1320015 (11 pages).
  • 13. E. Peyghan and L. Nourmohammadi Far and A. Tayebi, Cheeger-Gromoll type metrics
    on the (1,1)-tensor bundles, J. Cont. Math. Analysis, 48(2013), No 6, 59-70.
  • 14. E. Peyghan and A. Tayebi, Finslerian complex and K¨ahlerian structures, Nonlinear Anal.
    11(2010), 3021?3030.
  • 15. E. Peyghan and A. Tayebi, On Finsler manifolds whose tangent bundle has the g-natural
    metric, Int. J. Geom. Meth. Mod. Phys, 8(7) (2011), 1593-1610.
  • 16. E. Peyghan, A. Tayebi and C. Zhong, Foliations on the tangent bundle of Finsler manifolds, Science in China, Series A: Math, 55(3) (2011), 647-662.
  • 17. E. Peyghan, A. Tayebi and C. Zhong, Horizontal Laplacian on tangent bundle of Finsler
    manifold with g-natural metric, Inter. J. Geom. Meth. Modern. Phys, 9(7) (2012)
    1250061.
  • 18. A. Tayebi and E. Peyghan, On a class of Riemannian metrics arising from Finsler
    structures, C. R. Acad. Sci. Paris, Ser. I. 349(2011), 319-322.
  • 19. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds,
    Tohoku Math. J. 10(1958), 338-354.
  • 20. A. Soleiman and N. Youssef, Characterization of Finsler spaces of scalar curvature,
    Journal of Finsler Geometry and its Applications, 1(1) (2021), 15-25.
  • 21. K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Dekker
    1973.
  • 22. B. Ye Wu, Some results on the geometry of tangent bundle of Finsler manifolds, Publ.
    Math. Debrecen. 3691 (2007), 1-9