Let (M, F) be a Finsler manifold and G be the Cheeger-Gromoll metric on TM induced by F. We show that the curvature tensor field of the Levi-Civita connection on (TM,G) is determined by the curvature tensor field of Vrãnceanu connection and some adapted tensor fields on TM. Then we prove that (TM,G) is locally symmetric if and only if (M, F) is locally Euclidean. Also, we express the flag curvature of the Finsler manifold (M, F).
1. M. Amini, On weakly Landsberg 3-dimensional Finsler spaces, Journal of Finsler Geometry and its Applications, 1(2) (2021), 63-72.
2. K. Aso, Notes on some Properties of the Sectional Curvature of the Tangent Bundle, Yokohama Math. J. 29(1981), 1-5.
3. M.T.K Abbassi and M. Sarih, On some hereditary properties of Riemannian g-nnatural metrics on tangent bundles of Riemannian manifolds, Differ. Geom. Appl. 22(2005) 19-47.
4. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry, Springer-Verlag, New York, 2000.
5. A. Bejancu and H.R. Farran, A Geometric Characterization of Finsler Manifold of Constant Curvature K = 1, Internal. J. Math and Math.Sci, vol 23(6) (2000), 399-407.
6. A. Bejancu, Tangent bundle and indicatrix bundle of a Finsler manifold, Kodai Math. J. 31(2008), 272-306.
7. S. Gudmundsson and E. Kappos, On the geometry of tangent bundles, Expo. Math. 20(2002), 1-41.
8. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. Journal. Reine. Angewandte. Mathematik, (1970), 124-129.
9. O. Kowalski and M. Sekizawa, Natural transformations of Riemann-Jan metrics on manifolds to metrics on tangent bundles, Bull. Tokyo Gakugei Univ. 40 (1988), 1-29.
10. E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura. Appl. 150(1988), 1-19.
11. E. Peyghan and H. Nasrabadi and A. Tayebi, The Homogeneous Lift to the (1,1)-Tensor Bundle of a Riemannian Metric, Int. J. Geom. Meth. Modern. Phys, 10(4) (2013) 1350006, 18 pages.
12. E. Peyghan and H. Nasrabadi and A. Tayebi, Almost Paracontact Structure on Tangent Sphere Bundle, Int. J. Geom. Meth. Modern. Phys, 10(9) (2013), 1320015 (11 pages).
13. E. Peyghan and L. Nourmohammadi Far and A. Tayebi, Cheeger-Gromoll type metrics on the (1,1)-tensor bundles, J. Cont. Math. Analysis, 48(2013), No 6, 59-70.
14. E. Peyghan and A. Tayebi, Finslerian complex and K¨ahlerian structures, Nonlinear Anal. 11(2010), 3021?3030.
15. E. Peyghan and A. Tayebi, On Finsler manifolds whose tangent bundle has the g-natural metric, Int. J. Geom. Meth. Mod. Phys, 8(7) (2011), 1593-1610.
16. E. Peyghan, A. Tayebi and C. Zhong, Foliations on the tangent bundle of Finsler manifolds, Science in China, Series A: Math, 55(3) (2011), 647-662.
17. E. Peyghan, A. Tayebi and C. Zhong, Horizontal Laplacian on tangent bundle of Finsler manifold with g-natural metric, Inter. J. Geom. Meth. Modern. Phys, 9(7) (2012) 1250061.
18. A. Tayebi and E. Peyghan, On a class of Riemannian metrics arising from Finsler structures, C. R. Acad. Sci. Paris, Ser. I. 349(2011), 319-322.
19. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10(1958), 338-354.
20. A. Soleiman and N. Youssef, Characterization of Finsler spaces of scalar curvature, Journal of Finsler Geometry and its Applications, 1(1) (2021), 15-25.
21. K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Dekker 1973.
22. B. Ye Wu, Some results on the geometry of tangent bundle of Finsler manifolds, Publ. Math. Debrecen. 3691 (2007), 1-9
Raei, Z. (2021). On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric. Journal of Finsler Geometry and its Applications, 2(1), 1-30. doi: 10.22098/jfga.2021.1260
MLA
Zohre Raei. "On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric", Journal of Finsler Geometry and its Applications, 2, 1, 2021, 1-30. doi: 10.22098/jfga.2021.1260
HARVARD
Raei, Z. (2021). 'On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric', Journal of Finsler Geometry and its Applications, 2(1), pp. 1-30. doi: 10.22098/jfga.2021.1260
VANCOUVER
Raei, Z. On the geometry of tangent bundle of Finsler manifold with Cheeger-Gromoll metric. Journal of Finsler Geometry and its Applications, 2021; 2(1): 1-30. doi: 10.22098/jfga.2021.1260