On semi-P-reducible Finsler manifolds with relatively isotropic Landsberg curvature

Document Type : Original Article

Author

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz Tabriz. Iran E-mail: faghfouri@tabrizu.ac.ir

Abstract

The class of semi-P-reducible Finsler metrics is a rich and basic class of Finsler metrics that contains the class of L-reducible metrics, C-reducible metrics, and Landsberg metrics. In this paper, we prove that every semi-P-reducible manifold with isotropic Landsberg curvature reduces to semi-C-reducible manifolds. Also, we prove that a semi-P-reducible Finsler metric of relatively isotropic mean Landsberg curvature has relatively isotropic Landsberg curvature if and only if it is a semi-C-reducible Finsler metric.

Keywords


  • 1. X. Chen(g) and Z. Shen, Randers metrics with special curvature properties, Osaka
    J. of Math, 40(2003), 87-101.
  • 2. M. Faghfouri, A curvature property of generalized Randers change of m-th root metrics, Glob. J. Adv. Res. Class. Mod. Geom.,4 (2015), no. 1, 22–30.
  • 3. M. Faghfouri and N. Jazer, Shen’s L-process on Berwald connection, Ukrainian Math.
    J.,72 (2021), no. 8, 1314–1330.
  • 4. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
  • 5. M. Matsumoto and S, Numata, On semi-C-reducible Finsler spaces with constant
    coefficients and C2-like Finsler spaces, Tensor. N. S. 34(1980), 218-222.
  • 6. M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of
    Finsler spaces, J. Math. Kyoto Univ. 19(1979), 301-314.
  • 7. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys.
    31(1992), 43-84.
  • 8. M. Matsumot o and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces,
    Tensor. N. S. 32(1978), 225-230.
  • 9. M. Matsumoto and H. Shimada, On Finsler spaces with the curvature tensors Phijk
    and Shijk satisfying special conditions, Rep. Math. Phys. 12(1977), 77-87.
  • 10. H.D. Pande, P.N. Tripathi and B.N. Prasad, On a special form of the hv-curvature
    tensor of Berwald’s connection BΓ of Finsler space, Indian. J. Pure. Appl. Math.
    25(1994), 1275-1280.
  • 11. B.N. Prasad, Finsler spaces with the torsion tensor Pijk of a special form, Indian.
    J. Pur. Appl. Math. 11(1980), 1572-1579.
  • 12. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β)-metrics, Journal
    of Finsler Geometry and its Applications, 1(2020), 66-72.
  • 13. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys.
    Rev. 59(1941), 195-199.
  • 14. S. C. Rastogi, On certain P-reducible Finsler spaces, Ganita. 56(2005), 55-64.
  • 15. S. C. Rastogi and H. Kawaguchi, A geometrical meaning of the P-reducible condition
    in Finsler spaces, Tensor. N. S. 51(1992), 251-256.
  • 16. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
  • 17. A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler
    geometry, Publ. Math. Debrecen, 72(2008), 1-15.
  • 18. A. Tayebi, M. Bahadori and H. Sadeghi, On spherically symmetric Finsler metrics
    with some non-Riemannian curvature properties, J. Geom. Phys. 163 (2021), 104125.
  • 19. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
  • 20. A. Tayebi and E. Peyghan, Special Berwald metrics, Symmetry, Integrability and
    Geometry: Methods and its Applications, 6(2010), 008.
  • 21. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math. 114(1) (2015), 67-79.
  • 22. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen, 82(2) (2013), 461-471.