The class of semi-P-reducible Finsler metrics is a rich and basic class of Finsler metrics that contains the class of L-reducible metrics, C-reducible metrics, and Landsberg metrics. In this paper, we prove that every semi-P-reducible manifold with isotropic Landsberg curvature reduces to semi-C-reducible manifolds. Also, we prove that a semi-P-reducible Finsler metric of relatively isotropic mean Landsberg curvature has relatively isotropic Landsberg curvature if and only if it is a semi-C-reducible Finsler metric.
1. X. Chen(g) and Z. Shen, Randers metrics with special curvature properties, Osaka J. of Math, 40(2003), 87-101.
2. M. Faghfouri, A curvature property of generalized Randers change of m-th root metrics, Glob. J. Adv. Res. Class. Mod. Geom.,4 (2015), no. 1, 22–30.
3. M. Faghfouri and N. Jazer, Shen’s L-process on Berwald connection, Ukrainian Math. J.,72 (2021), no. 8, 1314–1330.
4. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
5. M. Matsumoto and S, Numata, On semi-C-reducible Finsler spaces with constant coefficients and C2-like Finsler spaces, Tensor. N. S. 34(1980), 218-222.
6. M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of Finsler spaces, J. Math. Kyoto Univ. 19(1979), 301-314.
7. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992), 43-84.
8. M. Matsumot o and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor. N. S. 32(1978), 225-230.
9. M. Matsumoto and H. Shimada, On Finsler spaces with the curvature tensors Phijk and Shijk satisfying special conditions, Rep. Math. Phys. 12(1977), 77-87.
10. H.D. Pande, P.N. Tripathi and B.N. Prasad, On a special form of the hv-curvature tensor of Berwald’s connection BΓ of Finsler space, Indian. J. Pure. Appl. Math. 25(1994), 1275-1280.
11. B.N. Prasad, Finsler spaces with the torsion tensor Pijk of a special form, Indian. J. Pur. Appl. Math. 11(1980), 1572-1579.
12. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β)-metrics, Journal of Finsler Geometry and its Applications, 1(2020), 66-72.
13. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. 59(1941), 195-199.
14. S. C. Rastogi, On certain P-reducible Finsler spaces, Ganita. 56(2005), 55-64.
15. S. C. Rastogi and H. Kawaguchi, A geometrical meaning of the P-reducible condition in Finsler spaces, Tensor. N. S. 51(1992), 251-256.
16. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
17. A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler geometry, Publ. Math. Debrecen, 72(2008), 1-15.
18. A. Tayebi, M. Bahadori and H. Sadeghi, On spherically symmetric Finsler metrics with some non-Riemannian curvature properties, J. Geom. Phys. 163 (2021), 104125.
19. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
20. A. Tayebi and E. Peyghan, Special Berwald metrics, Symmetry, Integrability and Geometry: Methods and its Applications, 6(2010), 008.
21. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math. 114(1) (2015), 67-79.
22. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen, 82(2) (2013), 461-471.
Faghfouri, M. (2020). On semi-P-reducible Finsler manifolds with relatively isotropic Landsberg curvature. Journal of Finsler Geometry and its Applications, 1(2), 94-104. doi: 10.22098/jfga.2020.1243
MLA
Morteza Faghfouri. "On semi-P-reducible Finsler manifolds with relatively isotropic Landsberg curvature", Journal of Finsler Geometry and its Applications, 1, 2, 2020, 94-104. doi: 10.22098/jfga.2020.1243
HARVARD
Faghfouri, M. (2020). 'On semi-P-reducible Finsler manifolds with relatively isotropic Landsberg curvature', Journal of Finsler Geometry and its Applications, 1(2), pp. 94-104. doi: 10.22098/jfga.2020.1243
VANCOUVER
Faghfouri, M. On semi-P-reducible Finsler manifolds with relatively isotropic Landsberg curvature. Journal of Finsler Geometry and its Applications, 2020; 1(2): 94-104. doi: 10.22098/jfga.2020.1243