On projectively flat Finsler warped product metrics with isotropic E-curvature

Document Type : Original Article

Authors

1 Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran. Email: m.gabrani@urmia.ac.ir

2 Department of Mathematics, Istanbul Bilgi University, 34060, Eski Silahtaraga Elektrik Santrali, Kazim Karabekir Cad. No: 2/13 Eyupsultan, Istanbul, Turkey. E-mail: esra.sengelen@bilgi.edu.tr

Abstract

‎In this paper‎, ‎we study a special class of Finsler metrics F= α∅(r‎, ‎s) called warped product metrics where α is a Riemannian metric‎, ‎r= u1 and s= v1/α‎. ‎We show that every projectively flat Finsler warped product metrics with isotropic E-curvature is a Randers metric‎.

Keywords


  • 1. H. Akbar-Zadeh, Sur les espaces de Finsler ´a courbures sectionnelles constantes. Bull.
    Acad. Roy. Belg. Cl. Sci, 74(5) (1988), 271-322.
  • 2. M. Atashafrouz, Characterization of 3-dimensional left-invariant locally projectively flat
    Randers metrics, Journal of Finsler Geometry and its Applications, 1(1) (2020), 96-102.
  • 3. B. Chen, Z. Shen, and L. Zhao, Constructions of Einstein Finsler metrics by warped
    product, Intern. J. Math. 29(11) (2018), 1850081.
  • 4. M. Gabrani, B. Rezaei, and E. S. Sevim, On warped product Finsler metrics of isotropic
    E-curvature, Mathematical Researches. accepted.
  • 5. M. Gabrani, B. Rezaei, and E. S. Sevim, On Landsberg warped product metrics, preprint.
  • 6. E. Guo, H. Liu, and X. Mo, On spherically symmetric Finsler metrics with isotropic
    Berwald curvature, Int. J. Geom. Methods Mod. Phys. 10(10) (2013), 1350054.
  • 7. G. Hamel, Uber die Geometrien, in denen die Geraden die K¨urtzesten sind ¨ , Math. Ann.
    57(1903), 231-264.
  • 8. H. Liu, X. Mo, and H. Zhang, Finsler warped product metrics with special Riemannian
    curvature properties, Sci. China Math. (2019), 1-18.
  • 9. H. Liu and X. Mo, Finsler warped product metrics of Douglas type, Canad. Math. Bull.
    62(1) (2019), 119-130.
  • 10. H. Liu and X. Mo, On projectively flat Finsler warped product metrics of constant flag
    curvature, J. Geom. Anal. (2021), https://doi.org/10.1007/s12220-021-00690-5.
  • 11. B. Najafi, A. Tayebi, and I. Peyghan, Doubly warped product Finsler manifolds with
    some non-Riemannain curvature properties, Ann. Pol. Math. 105 (2012), 293-311.
  • 12. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen,
    8(1961), 285-290.
  • 13. E. S. Sevim and M. Gabrani, On H-curvature of Finsler warped product metrics, Journal
    of Finsler Geometry and its Applications, 1(1) (2020), 37-44.
  • 14. Z. Yang and X. Zhang, Finsler warped product metrics with relatively isotropic Landsberg
    curvature, Canad. Math. Bull. 64(1) (2021), 182-191