Let ∇ be a symmetric connection on an n-dimensional manifold M n and T ∗ M n its cotangent bundle. In this paper, firstly, we determine the infinitesimal fiber-preserving projective(IFP) transformations on T ∗ M n with respect to the Riemannian connection of the modified Riemannian extension ˜ g ∇,c where c is a symmetric (0,2)-tensor field on M n . Then we prove that, if (T ∗ M n , ˜ g ∇,c ) admits a non-affine infinitesimal fiber- preserving projective transformation, then M n is locally flat, where ∇ is the Levi-Civita connection of a Riemannian metric g on M n . Finally, the infinitesimal complete lift, horizontal and vertical lift projective trans- formations on (T ∗ M n , ˜ g ∇,c ) are studied.
1. Z. Afifi, Riemann extensions of affine connected spaces, Q. J. Math. Oxf. Ser., 5 (1954), 312-320.
2. S. Aslanci, S. Kazimova and A.A. Salimov, Some Remarks Concerning Riemannian Extensions, Ukrainian Math. J., 62 (2010), 661-675.
3. C.L. Bejan and S. Eken, A characterization of the Riemann extension in terms of harmonicity, Czech. Math. J., 67 (2017), 197-206.
4. C.L. Bejan and O. Kowalski, On some differential operators on natural Riemann extensions, Ann. Glob. Anal. Geom., 48 (2015), 171-180.
5. L. Bilen, Projective vector fields on the cotangent bundle with modified Riemannian extension, Journal of the Institute of Science and Technology 9 (2019), 389-396.
6. E. Calvino-Louzao, E. Garca-Ro, P. Gilkey and R. Vazquez-Lorenzo, The geometry of modified Riemannian extensions, Proc. R. Soc. A, 465 (2009), 2023-2040.
7. E. Calvino-Louzao, E. Garca-Ro and R. Vazquez-Lorenzo, Riemann Extensions of Torsion-Free Connections with Degenerate Ricci Tensor, Can. J. Math., 62 (2010), 1037- 1057.
8. J.C. Diaz-Ramos, E. Garcia-Rio and R. Vazquez-Lorenzo, New examples of Osserman metrics with nondiagonalizable Jacobi operators, Differ. Geom. Appl., 24 (2006), 433- 442.
9. V. Dryuma, The Riemann Extensions in Theory of Differential Equations and their Applications, Mat. Fiz. Anal. Geom., 10 (2003), 307-325.
10. A. Gezer, L. Bilen and A. Cakmak, Properties of modified Riemannian extensions, Zh. Mat. Fiz. Anal. Geom., 11 (2015), 159-173.
11. I. Hasegawa and K. Yamauchi, Infinitesimal projective transformations on contact Riemannian manifolds, Journal of Hokkaido Univ. of Education, 51 (2000), 1-7.
12. I. Hasegawa and K. Yamauchi, infinitesimal projective transformations on tangent bundles with lift connections, Sci. Math. Jpn., 7 (2002), 489-503.
13. I. Hasegawa and K. Yamauchi, Infinitesimal projective transformations on tangent bundles, M. Anastasiei et al. (eds.), Finsler and Lagrange Geometries Springer Science+Business Media, New York, 2003.
14. S. Kobayashi, A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. J., 9 (1955), 39-41.
15. O. Kowalski and M. Sekizawa, On natural Riemann extensions, Publ. Math. Debrecen, 78 (2011), 709-721.
16. P. Law and Y. Matsushita, A spinor approach to Walker geometry, Commun. Math. Phys., 282 (2008), 577-623.
17. T. Nagano, The projective transformation on a space with parallel Ricci tensor, Kodai Math. Rep., 11 (1959), 131-138.
18. M. Okumura, On infinitesimal conformal and Projective transformation of normal contact spaces, Tohoku Math. J., 14 (1962), 389-412.
19. E.M. Patterson and A.G. Walker, Riemann extensions, Quart. J. Math. Oxford Ser., 3(2) (1952), 19-28.
20. A.A. Salimov, Tensor Operators and Their Applications, Nova Science Publishers, New York, 2012.
21. K. Yamauchi, On Riemannian manifolds admitting infinitesimal projective transformations, Hokkaido Math. J., 16 (1987), 115-125.
22. K. Yamauchi, On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds, Ann. Rep. Asahikawa. Med. Coll., 16 (1995), 1-6.
23. K. Yamauchi, On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds, Ann. Rep. Asahikawa. Med. Coll., 19 (1998), 49-55.
24. K. Yamauchi, On infinitesimal projective transformations of tangent bundle with the metric II+III, Ann. Rep. Asahikawa Med. Coll., 20 (1999), 67-72.
25. K. Yano, The Theory of Lie Derivatives and Its Applications, Bibliotheca mathematica, North Holland Pub. Co., 1957.
26. K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.
27. K. Yano and S. Kobayashi, Prolongation of tensor fields and connections to tangent bundles I, II, III, J. Math. Soc. Japan 18 (1966), 194-210, 236-246, 19 (1967), 486-488.
Zohrehvand, M. (2020). IFP transformations on the cotangent bundle with the modified Riemannian extension. Journal of Finsler Geometry and its Applications, 1(2), 27-38. doi: 10.22098/jfga.2020.1237
MLA
Mosayeb Zohrehvand. "IFP transformations on the cotangent bundle with the modified Riemannian extension", Journal of Finsler Geometry and its Applications, 1, 2, 2020, 27-38. doi: 10.22098/jfga.2020.1237
HARVARD
Zohrehvand, M. (2020). 'IFP transformations on the cotangent bundle with the modified Riemannian extension', Journal of Finsler Geometry and its Applications, 1(2), pp. 27-38. doi: 10.22098/jfga.2020.1237
VANCOUVER
Zohrehvand, M. IFP transformations on the cotangent bundle with the modified Riemannian extension. Journal of Finsler Geometry and its Applications, 2020; 1(2): 27-38. doi: 10.22098/jfga.2020.1237