IFP transformations on the cotangent bundle with the modified Riemannian extension

Document Type : Original Article

Author

Department of Mathematical Science and Statistics, Malayer University, Malayer, Iran. Email: m.zohrehvand@malayeru.ac.ir

Abstract

Let ∇ be a symmetric connection on an n-dimensional manifold M n
and T M n its cotangent bundle. In this paper, firstly, we determine the
infinitesimal fiber-preserving projective(IFP) transformations on T M n
with respect to the Riemannian connection of the modified Riemannian
extension ˜ g ∇,c where c is a symmetric (0,2)-tensor field on M n . Then
we prove that, if (T M n , ˜ g ∇,c ) admits a non-affine infinitesimal fiber-
preserving projective transformation, then M n is locally flat, where ∇
is the Levi-Civita connection of a Riemannian metric g on M n . Finally,
the infinitesimal complete lift, horizontal and vertical lift projective trans-
formations on (T M n , ˜ g ∇,c ) are studied.

Keywords


  • 1. Z. Afifi, Riemann extensions of affine connected spaces, Q. J. Math. Oxf. Ser., 5 (1954),
    312-320.
  • 2. S. Aslanci, S. Kazimova and A.A. Salimov, Some Remarks Concerning Riemannian
    Extensions, Ukrainian Math. J., 62 (2010), 661-675.
  • 3. C.L. Bejan and S. Eken, A characterization of the Riemann extension in terms of harmonicity, Czech. Math. J., 67 (2017), 197-206.
  • 4. C.L. Bejan and O. Kowalski, On some differential operators on natural Riemann extensions, Ann. Glob. Anal. Geom., 48 (2015), 171-180.
  • 5. L. Bilen, Projective vector fields on the cotangent bundle with modified Riemannian
    extension, Journal of the Institute of Science and Technology 9 (2019), 389-396.
  • 6. E. Calvino-Louzao, E. Garca-Ro, P. Gilkey and R. Vazquez-Lorenzo, The geometry of
    modified Riemannian extensions, Proc. R. Soc. A, 465 (2009), 2023-2040.
  • 7. E. Calvino-Louzao, E. Garca-Ro and R. Vazquez-Lorenzo, Riemann Extensions of
    Torsion-Free Connections with Degenerate Ricci Tensor, Can. J. Math., 62 (2010), 1037-
    1057.
  • 8. J.C. Diaz-Ramos, E. Garcia-Rio and R. Vazquez-Lorenzo, New examples of Osserman
    metrics with nondiagonalizable Jacobi operators, Differ. Geom. Appl., 24 (2006), 433-
    442.
  • 9. V. Dryuma, The Riemann Extensions in Theory of Differential Equations and their
    Applications, Mat. Fiz. Anal. Geom., 10 (2003), 307-325.
  • 10. A. Gezer, L. Bilen and A. Cakmak, Properties of modified Riemannian extensions, Zh.
    Mat. Fiz. Anal. Geom., 11 (2015), 159-173.
  • 11. I. Hasegawa and K. Yamauchi, Infinitesimal projective transformations on contact Riemannian manifolds, Journal of Hokkaido Univ. of Education, 51 (2000), 1-7.
  • 12. I. Hasegawa and K. Yamauchi, infinitesimal projective transformations on tangent bundles with lift connections, Sci. Math. Jpn., 7 (2002), 489-503.
  • 13. I. Hasegawa and K. Yamauchi, Infinitesimal projective transformations on tangent
    bundles, M. Anastasiei et al. (eds.), Finsler and Lagrange Geometries Springer Science+Business Media, New York, 2003.
  • 14. S. Kobayashi, A theorem on the affine transformation group of a Riemannian manifold,
    Nagoya Math. J., 9 (1955), 39-41.
  • 15. O. Kowalski and M. Sekizawa, On natural Riemann extensions, Publ. Math. Debrecen,
    78 (2011), 709-721.
  • 16. P. Law and Y. Matsushita, A spinor approach to Walker geometry, Commun. Math.
    Phys., 282 (2008), 577-623.
  • 17. T. Nagano, The projective transformation on a space with parallel Ricci tensor, Kodai
    Math. Rep., 11 (1959), 131-138.
  • 18. M. Okumura, On infinitesimal conformal and Projective transformation of normal contact spaces, Tohoku Math. J., 14 (1962), 389-412.
  • 19. E.M. Patterson and A.G. Walker, Riemann extensions, Quart. J. Math. Oxford Ser.,
    3(2) (1952), 19-28.
  • 20. A.A. Salimov, Tensor Operators and Their Applications, Nova Science Publishers, New
    York, 2012.
  • 21. K. Yamauchi, On Riemannian manifolds admitting infinitesimal projective transformations, Hokkaido Math. J., 16 (1987), 115-125.
  • 22. K. Yamauchi, On infinitesimal conformal transformations of the tangent bundles over
    Riemannian manifolds, Ann. Rep. Asahikawa. Med. Coll., 16 (1995), 1-6.
  • 23. K. Yamauchi, On infinitesimal projective transformations of the tangent bundles with
    the complete lift metric over Riemannian manifolds, Ann. Rep. Asahikawa. Med. Coll.,
    19 (1998), 49-55.
  • 24. K. Yamauchi, On infinitesimal projective transformations of tangent bundle with the
    metric II+III, Ann. Rep. Asahikawa Med. Coll., 20 (1999), 67-72.
  • 25. K. Yano, The Theory of Lie Derivatives and Its Applications, Bibliotheca mathematica,
    North Holland Pub. Co., 1957.
  • 26. K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New
    York, 1973.
  • 27. K. Yano and S. Kobayashi, Prolongation of tensor fields and connections to tangent
    bundles I, II, III, J. Math. Soc. Japan 18 (1966), 194-210, 236-246, 19 (1967), 486-488.