Invariant vector field on a homogeneous Finsler space with special (α,β)-metric

Document Type : Original Article

Author

Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran E-mail: m.ebrahimi@uma.ac.ir

Abstract

In a Finsler spaces, we consider a special (α,β)-metric L satisfying L2(α,β) =
c1 α 2 +2c2 αβ+c3β2, where ci are constant. In this paper, the existence of invariant vector
elds on a special homogeneous (α,β)-space with L metric is proved. Then we study geodesic
vectors and investigate the set of all homogeneous geodesics of invariant (α,β)-metric L on
homogeneous spaces and simply connected 4-dimensional real Lie groups admitting invariant
hypercomplex structure.

Keywords


  • 1. H. An, S. Deng, Invariant (α, β)-metrics on homogeneous manifolds, Monatsh. Math,
    154(2008), 89-102.
  • 2. D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer,
    New York, (2000).
  • 3. M. L. Barberis, Hypercomplex structures on four-dimensional Lie groups, Proc. Am.
    Math. Soc. 125 (1997), 1043-1054.
  • 4. M. L. Barberis, Hyper-Kahler Metrics Conformal to Left Invariant Metrics on FourDimensional Lie Groups, Mathematical Physics, Analysis and Geometry 6(2003), 1-8.
  • 5. S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, New York,
    2012.
  • 6. S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math.
    207(2002), 149-155.
  • 7. S. Deng and Z. Hou, Invariant Randers metrics on Homogeneous Riemannian manifolds,
    J. Phys. A: Math. General 37 (2004) 4353-4360; Corrigendum, ibid, 39(2006), 5249-5250.
  • 8. M. Ebrahimi and D. Latifi,On Flag Curvature and Homogeneous Geodesics of Left Invariant Randers Metrics on the Semi-Direct Product a ⊕p r , Journal of Lie Theory
    29(2019), 619-627.
  • 9. P. Habibi, Homogeneous geodesics in Homogeneous Randers spaces-examples, Journal of
    Finsler Geometry and its Applications, 1(1) (2020), 89-95.
  • 10. S. Homolya and O. Kowalski, Simply connected two-step homogeneous nilmanifolds of
    dimension 5, Note Mat. 26(2006), 69-77.
  • 11. K. Kaur and G. Shanker, On the geodesics of a homogeneous Finsler space with a special
    (α, β)-metric, Journal of Finsler Geometry and its Applications, 1(1) (2020), 26-36.
  • 12. O. Kowalski and L. Vanhecke, Riemannian-manifolds with homogeneous geodesics, Boll.
    Unione. Mat. Ital. 5(1991), 189-246.
  • 13. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, 1969.
  • 14. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys.
    57(2007), 1421-1433.
  • 15. D. Latifi, A. Razavi, Bi-invariant Finsler metrics on Lie groups, Aust. J. Basic Appl.
    Sci. 5(2011), 507-511.
  • 16. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
    43-83.
  • 17. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math.
    76(1954), 33-65.
  • 18. G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys.
    Rev. 59(1941), 195-199.
  • 19. G. Shanker and S. Rani, On S-curvature of a homogeneous Finsler space with square
    metric, Int. J. Geom. Meth. Mod. Physics, 17(2) (2020), 2050019.
  • 20. Z. Shen, Lectures on Finsler Geometry. World Scientific, 2001.