Homogeneous geodesics in homogeneous Randers spaces - examples

Document Type : Original Article

Author

Department of Mathematics, Islamic Azad University, Astara branch, Astara, Iran. E-mail: p.habibi@iau-astara.ac.ir

Abstract

In this paper, we study homogeneous geodesics in homogeneous Randers spaces. we give a four dimensional example and we obtain homogeneous geodesics of this space in some special cases.

Keywords


  • 1. V. I. Arnold, Sur la g´eom´etrie diff´erentielle des groupes de Lie de dimension infinie et
    ses applications `a l’hydrodynamique des fluides parfaites, Ann. Inst. Fourier(Grenoble),
    16 (1960), 319-361.
  • 2. D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemann-Finsler geometry,
    Springer-Verlag, New-York, 2000.
  • 3. B. Kostant, Holonomy and Lie algebra of motions in Riemannian manifolds, Trans. Amer.
    Math. Soc., 80 (1955), 520-542.
  • 4. O. Kowalski, Generalized symmetric spaces, Lecture Notes in Math., vol. 805, SpringerVerlag, Berlin-Heidelberg-New York, 1980.
  • 5. O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous
    Riemannian manifolds, Geom. Dedicata, 81(2000), 209-214.
  • 6. O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll.
    Un. Mat. Ital., 5 (1991), 189-246.
  • 7. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57
    (2007), 1421-1433.
  • 8. D. Latifi and A. Razavi, Homogeneous geodesics of left invariant Randers metrics on a
    three-dimensional lie group , Int. J. Contemp. Math. Sciences 4(18) (2009), 873-881.
  • 9. E. B. Vinberg, Invariant linear connection in a homogeneous manifold, Trudy MMO 9
    (1960), 191-210.
  • 10. Z. Yan and S. Deng, Existence of homogeneous geodesics on homogeneous Randers
    spaces, Houston J. Math., 44(2) (2018), 481-492.
  • 11. Z. Yan and L. Huang, On the existence of homogeneous geodesic in homogeneous Finsle
    spaces, J. Geom. Phys., 124(2018), 264-267.