The class of Matsumoto metrics with almost vanishing H-curvatures

Document Type : Original Article

Authors

1 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran. Email: faghfouri@tabrizu.ac.ir

2 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran. Email: njazer@tabrizu.ac.ir

Abstract

In this paper, we are going to consider a class of (α, β)-metrics which introduced by Matsumoto. We find a condition under which a Matsumoto metric of almost vanishing H-curvature reduces to a Berwald metric.

Keywords


  • 1. H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constantes, Acad
    Roy Belg Bull Cl Sci. 80(1988), 271-322.
  • 2. D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J Diff
    Geom. 66(2004), 377-435.
  • 3. B. Bidabad and M. Rafie-Rad, Pure pursuit navigation on Riemannian manifolds, Nonlinear Analysis: RWA. 10(2009), 1265-1269.
  • 4. M.H. Emamian and A. Tayebi, Generalized Douglas-Weyl Finsler spaces, Iranian J Math
    Sci Inform. 10(2015), 67-75.
  • 5. M. Matsumoto, The Berwald connection of Finsler with an (α, β)-metric, Tensor (N.S).
    50(1991), 18-21.
  • 6. M. Matsumoto, A slope of a hill is a Finsler surface with respect to a time measure, J
    Math Kyoto Univ. 29(1980), 17-25.
  • 7. B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special
    non-Riemannian curvature properties, Geom Dedicata. 131(2008), 87-97.
  • 8. B. Najafi and A. Tayebi, A class of isotropic mean Berwald metrics, Acta Math Acad
    Paedagogicae Nyiregyhaziensis. 32(2016), 113-123.
  • 9. H. Shimada and V. S. Sabau, An introduction to Matsumoto metric, Nonlinear Analysis:
    RWA. 63(2005), 165-168.
  • 10. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann Polon Math. 114(2015), 67-79.
  • 11. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta Math Sinica
    English Series. 31(2015), 1611-1620.
  • 12. A. Tayebi and M. Shahbazi Nia, A new class of projectively at Finsler metrics with
    constantag curvature K = 1, Differ. Geom Appl. 41(2015), 123-133.
  • 13. A. Tayebi and T. Tabatabeifar, Dougals-Randers manifolds with vanishing stretch tensor,
    Publ Math Debrecen. 86(2015), 423-432.
  • 14. A. Tayebi and T. Tabatabeifar, Matsumoto metric of reversible curvatures, Acta Math
    Acad Paedagogicae Nyiregyhaziensis. 32(2016), 165-200.
  • 15. A. Tayebi and T. Tabatabeifar, Unicorn metrics with almost vanishing H- and Ξcurvatures, Turkish J Math. 41(2017), 998-1008.