A special class of Finsler metrics

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom. Iran. E-mail: sadeghihassan64@gmail.com

Abstract

In this paper, we study a special class of Finsler metrics F = F(x, y) in Rn that satisfy F(−x, y) = F(x, y). We show the induced distance function of F satisfies dF (p, q) = dF (−q,−p) for all p, q in Rn. The geodesics of these metrics have special property and many well-known Finsler metrics belong to this class. We prove that these metrics with constant S-curvature satisfy S = 0.

Keywords


  • 1. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific Publishers, 2005.
  • 2. S. Sabau and H. Shimada, Finsler manifolds with reversible geodesics, Revue Roumaine
    des Mathematiques Pures et Appliquees 57(1).
  • 3. Z. Shen, Landsberg curvature, S-curvature and Riemann curvature. In: A Sampler of
    Finsler Geometry, MSRI Series, Cambridge University Press, Cambridge, 2004.
  • 4. Z. Shen, Finsler manifolds with nonpositive flag curvature and constant S-curvature,
    Math. Z, 249(2005), 625-639.
  • 5. Z. Shen, Volume comparison and its applications in Riemannian-Finsler geometry, Advances in Math. 128(1997), 306328.
  • 6. L. Zhou, Spherically symmetric Finsler metrics in Rn, Publ. Math. Debrecen. 80(2012),
    1-11.