On generalized 4-th root Finsler metrics

Document Type : Original Article

Author

Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran. Iran. E-mail: t.tabatabaeifar@aut.ac.ir

Abstract

In this paper, we prove that every generalized cubic Finsler metric with vanishing Landsberg curvature is a Berwald metric. This yields an extension of Matsumoto theorem for the cubic metric. Then, we show that every generalized 4-th root Finsler metric with vanishing Landsberg curvature is a Berwald metric.

Keywords


  • 1. P. L. Antonelli, R. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler
    Spaces with Applications in Physics and Biology, Kluwer Acad. Publ. Netherlands, 1993.
  • 2. G.S. Asanov, Finslerian Extension of General Relativity, Reidel, Dordrecht, 1984.
  • 3. V. Balan, Spectra of symmetric tensors and m-root Finsler models, Linear Algebra and
    its Applications, 436(1) (2012), 152-162.
  • 4. V. Balan, N. Brinzei and S. Lebedev, Geodesics, paths and Jacobi fields for BerwaldMo´or quartic metrics, Hypercomplex Numbers in Geometry and Physics, accepted.
  • 5. V. Balan and N. Brinzei, Einstein equations for (h, v)-Berwald-Mo´or relativistic models,
    Balkan. J. Geom. Appl. 11(2) (2006), 20-26.
  • 6. V. Balan and N. Brinzei, Berwald-Mo´or-type (h, v)-metric physical models, Hypercomplex Numbers in Geometry and Physics. 2(4) (2005), 114-122.
  • 7. S.V. Lebedev, The generalized Finslerian metric tensors, to appear.
  • 8. B. Li and Z. Shen, On projectively flat fourth root metrics, Canad. Math. Bull. 55(2012),
    138-145.
  • 9. D.G. Pavlov (Ed.), Space-Time Structure, Algebra and Geometry, Collected papers,
    TETRU, 2006.
  • 10. D.G. Pavlov, Four-dimensional time, Hypercomplex Numbers in Geometry and Physics,
    1(2004), 31-39.
  • 11. Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin.
    Ann. Math. 27(2006), 73-94.
  • 12. H. Shimada, On Finsler spaces with metric L = m√ai1i2...imyi1 yi2 ...yim, Tensor, N.S.,33(1979), 365-372.
  • 13. L. Tam`assy, Finsler spaces with polynomial metric, Hypercomplex Numbers in Geometry
    and Physics, 3(6) (2006), 85-92.
  • 14. A. Tayebi, On generalized 4-th root metrics of isotropic scalar curvature, Mathematica
    Slovaca. 68(2018), 907-928.
  • 15. A. Tayebi and B. Najafi, On m-th toot Finsler metrics, J. Geom. Phys. 61(2011), 1479-
    1484.
  • 16. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R.
    Acad. Sci. Paris, Ser. I, 349(2011), 691-693.
  • 17. A. Tayebi, E. Peyghan and M. Shahbazi Nia, On generalized m-th root Finsler metrics,
    Linear Algebra. Appl. 437(2012) 675-683.
  • 18. Y. Yu and Y. You, On Einstein m-th root metrics, Diff. Geom. Appl. 28(2010) 290-294.
  • 19. M. Matsumoto, Theory of Finsler spaces with m-th root metric II, Math. Debrecen, 1996.
  • 20. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, Journal
    of Geometry and Physics, 61 (2011) 1479-1484.