Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran. Iran. E-mail: t.tabatabaeifar@aut.ac.ir
In this paper, we prove that every generalized cubic Finsler metric with vanishing Landsberg curvature is a Berwald metric. This yields an extension of Matsumoto theorem for the cubic metric. Then, we show that every generalized 4-th root Finsler metric with vanishing Landsberg curvature is a Berwald metric.
1. P. L. Antonelli, R. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ. Netherlands, 1993.
2. G.S. Asanov, Finslerian Extension of General Relativity, Reidel, Dordrecht, 1984.
3. V. Balan, Spectra of symmetric tensors and m-root Finsler models, Linear Algebra and its Applications, 436(1) (2012), 152-162.
4. V. Balan, N. Brinzei and S. Lebedev, Geodesics, paths and Jacobi fields for BerwaldMo´or quartic metrics, Hypercomplex Numbers in Geometry and Physics, accepted.
5. V. Balan and N. Brinzei, Einstein equations for (h, v)-Berwald-Mo´or relativistic models, Balkan. J. Geom. Appl. 11(2) (2006), 20-26.
6. V. Balan and N. Brinzei, Berwald-Mo´or-type (h, v)-metric physical models, Hypercomplex Numbers in Geometry and Physics. 2(4) (2005), 114-122.
7. S.V. Lebedev, The generalized Finslerian metric tensors, to appear.
8. B. Li and Z. Shen, On projectively flat fourth root metrics, Canad. Math. Bull. 55(2012), 138-145.
Tabatabaeifar, T. (2020). On generalized 4-th root Finsler metrics. Journal of Finsler Geometry and its Applications, 1(1), 54-59. doi: 10.22098/jfga.2020.1010
MLA
Tayebeh Tabatabaeifar. "On generalized 4-th root Finsler metrics", Journal of Finsler Geometry and its Applications, 1, 1, 2020, 54-59. doi: 10.22098/jfga.2020.1010
HARVARD
Tabatabaeifar, T. (2020). 'On generalized 4-th root Finsler metrics', Journal of Finsler Geometry and its Applications, 1(1), pp. 54-59. doi: 10.22098/jfga.2020.1010
VANCOUVER
Tabatabaeifar, T. On generalized 4-th root Finsler metrics. Journal of Finsler Geometry and its Applications, 2020; 1(1): 54-59. doi: 10.22098/jfga.2020.1010