On the geodesics of a homogeneous Finsler space with a special (α, β)−metric

Document Type : Original Article

Authors

1 Department of Mathematics, Punjabi University Constituent College Ghudda, Bathinda, Punjab, India. E-mail: kirandeepiitd@gmail.com

2 Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India. E-mail: gshankar@cup.ac.in

Abstract

One of the most important concepts in geometry is of geodesics. Geodesic in a manifold is the generalization of notion of a straight line in an Euclidean space. A geodesic in a homogeneous Finsler space (G/H, F) is called homogeneous geodesic if it is an orbit of a one-parameter subgroup of G. Homogeneous geodesics on homogeneous Riemannian manifolds have been studied by many authors.
  Latifi has extended the concept of homogeneous geodesics in homogeneous Finsler spaces. He has given a criterion for characterization of geodesic vectors. Latifi and Razavi have studied homogeneous geodesics in a 3-dimensional connected Lie group with a left invariant Randers metric and show that all the geodesics on spaces equipped with such metrics are homogeneous. 
  In this paper, first we give basic definitions required to define a honogeneous Finsler space. Next, we study geodesics and geodesic vectors for homogeneous Finsler space with infinite series (α, β)-metric. Next, we give a lemma in which the existence of invariant vector field corresponding to 1-form β for a homogeneous Finsler space with infinite series metric is proved. Further, we find necessary and sufficient condition for a non-zero vector in this homogeneous space to be a geodesic vector.

Keywords


  • 1. S. I. Amari and H. Nagaoka, Methods of information geometry, Translations of Mathematical Monographs, AMS, 191, Oxford Univ. Press, 2000.
  • 2. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler
    spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Netherlands, 58, 1993.
  • 3. V. I. Arnold, Sur la g´eom´etrie diff´erentielle des groupes de Lie de dimension infinie et
    ses applications `alhydrodynamique des fluides parfaites, Ann. Inst. Fourier (Grenoble),
    16 (1960), 319-361.
  • 4. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, GTM200, Springer-Verlag 2000.
  • 5. E. Cartan, Les espaces de Finsler, Actualites Scientifiques et Industrielles no. 79, Paris,
    Hermann, 1934.
  • 6. S. S. Chern, Finsler geometry is just Riemannian geometry without the quadratic restriction, Notices Amer. Math. Soc., 43 (9) (1996), 959-963.
  • 7. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics,
    Vol. 6, World Scientific Publishers, 2005.
  • 8. S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, New York,
    2012.
  • 9. S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math, 207
    (2002), 149-155.
  • 10. Z. Duˇsek, The affine approach to homogeneous geodesics in homogeneous Finsler spaces,
    preprint, arXiv:1703.01199.
  • 11. P. Finsler, U¨ber Kurven und Fl¨achen in allgemeinen R¨aumen, (Dissertation, G¨ottingen,
    1918), Birkha¨user Verlag, Basel, 1951.
  • 12. C. Gordon, Homogeneous Riemannian manifolds whose geodesics are Orbits, Prog. Nonlinear Differ. Eq. App., 20 (1996), 155-174.
  • 13. P. Habibi, D. Latifi and M. Toomanian, Homogeneous geodesics and the critical points
    of the restricted Finsler funtion, J. Cont. Math. Anal., 4 (6) (2011), 12-16.
  • 14. M. Hosseini and H. R. Salimi Moghaddam, On the existence of homogeneous geodesics
    in homogeneous (α, β)-spaces, Preprint arXiv:1710.02407[math.DG].
  • 15. V.V. Kajzer, Conjugate points of left invariant metrics on Lie group, Sov. Math., 34
    (1990), 3244 [translation from. Izv. Vyssh. Uchebn. Zaved. Mat. 342 (1990), 27-37].
  • 16. A. Kaplan, On the geometry of groups of Heisenberg type, Bull. Lond. Math. Soc., 15
    (1983), 35-42.
  • 17. K. Kaur and G. Shanker, Ricci curvature of a homogeneous Finsler space with exponential
    metric, Differential Geometry - Dynamical Systems, 22 (2020), 130-140.
  • 18. K. Kaur and G. Shanker, Flag curvature of a naturally reductive homogeneous Finsler
    space with infinite series metric, Applied Sciences, 22 (2020), 114-127.
  • 19. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, Vol. 1, 1963; Vol. 2, 1969.
  • 20. B. Kostant, Holonomy and Lie algebra of motions in Riemannian manifolds, Trans. Am.
    Math. Soc., 80 (1995), 520-542.
  • 21. O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous
    Riemannian manifolds, Geom. Dedicata, 81 (2000), 209-214 [Erratum: Geom. Dedicata
    84 (2001), 331-332].
  • 22. O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll.
    Un. Math. Ital. 5 (1991), 189-246.
  • 23. O. Kowalski and Z. Vl´asˇek, Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debr., 62 (3-4) (2003), 437-446.
  • 24. E. A. Lacomba, Mechanical Systems with Symmetry on Homogeneous Spaces, Trans.
    Amer. Math. Soc., 185 (1973), 477-491.
  • 25. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57
    (2007), 1421-1433.
  • 26. D. Latifi and A. Razavi, Homogeneous geodesics of left invariant Randers metrics on a
    three-dimensional Lie group, Int. J. Cont. Math. Sci., 4 (2009), 873-881.
  • 27. M. Matsumoto, On a C-reducible Finsler space, Tensor N. S., 24 (1972), 29-37.
  • 28. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev.,
    59 (1941), 195-199.
  • 29. G. Shanker and K. Kaur, Homogeneous Finsler spaces with some special (α, β)-metrics,
    Preprint, arXiv:1712.06328v2[math.DG].
  • 30. G. Shanker and K. Kaur, Naturally reductive homogeneous space with an invariant
    (α, β)-metric, Lobachevskii Journal of Mathematics, 40 (2) (2019), 210-218.
  • 31. G. Shanker and K. Kaur, Homogeneous Finsler space with infinite series (α, β)-metric,
    Applied Sciences, 21 (2019), 219-235.
  • 32. G. Shanker and K. Kaur, Homogeneous Finsler space with exponential metric, Advances
    in Geometry, 20 (3) (2020), 391-400.
  • 33. J. Szenthe, Hoogeneous geodesics of left invariant metrics, Univ. Iagel. Acta Math., 38
    (2000), 99-103.
  • 34. J. Szenthe, Stationary geodesics of left invariant Lagrangians, J. Phys. A: Math. Gen.,
    34 (2001), 165-175.
  • 35. A. Tayebi and B. Najafi, On m-th root Finsler metrics, Journal of Geometry and Physics,
    61 (8) (2011), 1479-1484.
  • 36. A. Tayebi and M. S. Nia, A new class of projectively flat Finsler metrics with constant
    flag curvature K = 1, Differential Geometry and its Applications, 41 (2015), 123-133.
  • 37. G. Z. T´oth, On Lagrangian and Hamiltonian systems with homogeneous trajectories, J.
    Phys. A: Math. Theor., 43 (2010), 385206 (19pp).
  • 38. E.B. Vinberg, Invariant linear connections in a homogeneous manifold, Trudy MMO, 9
    (1960), 191-210.
  • 39. Z. Yan and S. Deng, Finsler spaces whose geodesics are orbits, Differ. Geom. Appl., 36
    (2014), 1-23.
  • 40. Z. Yan and S. Deng, Existence of homogeneous geodesics on homogeneous Randers
    spaces, Houston J. Math., (2016) (in preparation)
  • 41. Z. Yan, Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension, Monatsh Math., 182 (2017), 165-171.
  • 42. Z. Yan and Libing Huang, On the existence of homogeneous geodesic in homogeneous
    Finsler spaces, J. Geom. Phys., 124 (2018), 264-267.