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Abstract. Utilizing Killing frames on homogeneous Finsler manifolds, we ex-

press the Berwald and mean Berwald curvatures in terms of Killing frames and

get some rigidity results among them we prove that homogeneous isotropic

weakly Berwald metrics reduce to weakly Berwald metric.
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1. Introduction

In Riemannian geometry, a Killing vector field is a vector field on a Rie-

mannian manifold (M,g) that preserves the metric g. Killing fields are the

infinitesimal generators of isometries; that is, flows generated by Killing fields

are continuous isometries of the manifold. More simply, the flow generates a

symmetry, in the sense that moving each point on an object the same distance

in the direction of the Killing vector will not distort distances on the object.

Thus a vector field X is a Killing field if the Lie derivative with respect to X of

the metric g vanishes, LXg = 0. A typical use of the Killing field is to express
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a symmetry in general relativity in which the geometry of spacetime as dis-

torted by gravitational fields is viewed as a 4-dimensional pseudo-Riemannian

manifold. In a static configuration, in which nothing changes with time, the

time vector will be a Killing vector, and thus the Killing field will point in the

direction of forward motion in time.

In Finsler geometry, the Riemannian and non-Riemannian curvatures are

mostly defined with standard local coordinates

C :=
{
x = (xi) ∈ M, y = yi∂/∂xi ∈ TxM

}
.

But in the homogeneous context, generally speaking, the local coordinates are

not compatible with the homogeneous structure, and invariant frames or Killing

frames seem more suitable. A Killing frame for a Finsler manifold (M,F ) is a

set of local vector fields {Xi}ni=1, n := dim(M), defined on an open subset U

around a given point, such that: (1) The values Xi(x), ∀i, give bases for each

tangent space Tx(M), x ∈ U ; (2) In U , eachXi satisfies X̃i(F ) = 0.

Though Killing frames are rare in the general study of Finsler geometry,

they can be easily found for a homogeneous Finsler space at any given point.

Let the homogeneous Finsler space (M,F ) be presented as M = G/H, where

H is the isotropy subgroup for the given x. The tangent space TMx can be

identified as the quotient m = g/h, where g and h are the Lie algebras of G and

H, respectively. Take any basis {vi}ni=1 of m, with the pre-images {v̂1, . . . , v̂n}
in g. The Killing vector fields {Xi}ni=1 on M corresponding to v̂is defines a

Killing frame around x. The choice of v̂is or Xis identifies the quotient space m

with a subspace of g, and then we can write the decomposition of linear space

g = h+m. (1.1)

In homogeneous Finsler geometry, curvatures can be reduced to some tensors

on m, and differential equations are reduced to linear equations. So we may

avoid some extremely complicated calculations, and find the intrinsic nature

of curvatures from the Lie algebra structures. The most successful examples

for this approach include the following. We can use Killing frames (i.e., local

frames provided by Killing vector fields) to present the S-curvature, and use

the Finslerian submersion technique to deduce the flag curvature formula, for

a homogeneous Finsler manifold [1][2][4][5][7][15][16]. Notice in Finsler geom-

etry, curvatures are mostly defined with standard local coordinates C. But

in the homogeneous context, generally speaking, the local coordinates are not

compatible with the homogeneous structure, and invariant frames or Killing

frames seem more suitable. In [3], by applying invariant frames, Huang pro-

vides explicit formulas for all curvatures in homogeneous Finsler geometry.

In [4], by using the Killing fields, Hu-Deng give formula for the Riemann

curvature of a homogeneous Finsler manifolds which is a generalization of the

formula for homogeneous Riemannian manifolds. Then Xu-Deng proved that
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a homogeneous Finsler space has isotropic S-curvature if and only if it has

vanishing S-curvature [14].

2. Killing Frame

For the Killing frame {X1, . . . , Xn} around x ∈ M , a set of y-coordinates

y = (yi) can be defined by y = yiXi. Accordingly, we have the fundamental

tensor gij = 1
2 [F

2]yiyj , and the inverse matrix of (gij) is denoted as (gij).

When both the Killing frame and the local coordinates {x = (x̄ī), y = ȳj̄∂x̄j̄}
are used, the terms and indices for the local coordinates are marked with bars,

and the indices with bars are moved up and down by the fundamental tensors

ḡīj̄ or ḡīj̄ for the local coordinates. Let f i
ī
and f ī

i , ∀i and ī, be the transition

functions such that around x,

∂x̄ī = f i
īXi, and Xi = f ī

i∂x̄ī . (2.1)

We summarize some easy and useful identities which show how the transition

functions exchange the indices with and without bars:

ȳī = f ī
i y

i and yi = f i
ī ȳ

ī (2.2)

∂ȳī = f i
ī∂yi and ∂yi = f i

ī∂ȳī , (2.3)

ḡīj̄ = f i
ī gijf

j
j̄

and gij = f ī
i ḡīj̄f

j̄
j , (2.4)

ḡīj̄ = f ī
i g

ijf j̄
j and gij = f i

ī ḡ
īj̄f j

j̄
. (2.5)

The S-curvature is a important non-Riemannian quantity. At the first time

S-curvature introduced by Z.Shen in [6]. it is for measure the rate of change

of the distortion along geodesics. There is a notion of distortion τ = τ(x, y) on

TM associated with a volume form dV = σ(x)dx, which is defined by

τ(x, y) = ln

√
det(gij(x, y))

σ(x)
. (2.6)

Then the S-curvature is defined by

S(x, y) =
d

dt

[
τ
(
c(t), ċ(t)

)]
|t=0, (2.7)

where c(t) is the geodesic with ċ(0) = y.
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3. Results

Lemma 3.1. Let (M,F ) be an n-dimensional homogeneous Finsler manifold.

Suppose that {Xi}ni=1 is a Killing frame around x ∈ M for the Finsler metric F .

Then for y = ỹiXi(x) ∈ TMx, the geodesic spray coefficients can be presented

as

Gī = −1

2

{
yiȳj̄∂x̄īf ī

i +
1

2
gilcklj [F

2]ykyjf ī
i

}
. (3.1)

where cklj are defined by [Xl, Xj ](x) = ckljXk(x).

Proof. Let {X1, . . . , Xn} be a Killing frame around x ∈ M for the Finsler

metric F . In [14], Xu-Deng have studied Killing frames of homogeneous Finsler

spaces. For y = ỹiXi(x) ∈ TMx, they obtain the geodesic spray G(x, y) as

follows

G(x, y) = yiX̃i +
1

2
gilcklj [F

2]ykyj∂yi . (3.2)

The spray coefficients are given by

Gī =
1

4
ḡīl̄

[
(F 2)x̄j̄ ȳl̄ ȳj̄ − (F 2)x̄ī

]
. (3.3)

By using (3.2) and (3.3), we get

G(x, y) = yi(f ī
i∂xi + ȳī∂xif j̄

i ∂ȳj̄ ) +
1

2
gilcklj [F

2]ykyjf ī
i∂ȳī

= ȳī∂xi +

{
yiȳj̄∂xjf ī

i +
1

2
gilcklj [F

2]ykyjf ī
i

}
∂ȳī . (3.4)

Comparing (3.2) and (3.4), imply (3.1). □

Let (M,F ) be an n-dimensional homogeneous Finsler manifold. Suppose

that {Xi}ni=1 is a Killing frame around x ∈ M . Then for any 0 ̸= y ∈ TMx, the

S-curvature at (x, y) can be presented with the notations for the Killing frame

as

S(x, y) =
1

2
gilcklj

[
F 2

]
yk
yjIi. (3.5)

Now consider the case that M = G/H is a homogeneous Finsler space, where

H is the isotropy group of x ∈ M . Let the Killing vector fields Xi’s be defined

by v̂i ∈ g, ∀i. Then the tangent space TMx can be identified with the n-

dimensional subspace m spanned by the values of all the v̂i’s at x. With respect

to the decomposition g = h + m, there is a projection map pr : g → m. Note

that for the bracket operation [·, ·] on g, we have [·, ·]m = pr[·, ·]. Then ckijs can

be determined by

[v̂i, v̂j ]m = −ckij v̂k. (3.6)

In [14], Xu-Deng proved the existence of Killing frames around x. Each Killing

frame {Xi}ni=1 determines a decomposition g = h+m, where Xi is determined

by v̂i in m. Let the operation [·, ·]m be defined as before. The gradient field of
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ln
√

det(gpq) with respect to the fundamental tensor on TMx\0 is the m-valued

function

gilIiv̂l = gil
[
ln
√
det(gpq)

]
yi
v̂l. (3.7)

We will denote it as ∇gij ln
√

det(gpq)(y) for y ∈ m. Let ⟨·, ·⟩y be the inner

product defined by the fundamental tensor gij at y. Then by (3.6) we can

rewrite (3.5) as

S(x, y) = gilckljgkhy
hyjIi =

〈
[y,∇gij ln

√
det(gpq)(y)]m, y

〉
y
, (3.8)

which gives a formula for the S-curvature of a homogenous Finsler space.

Proposition 3.2. Let (M,F ) be an n-dimensional homogeneous Finsler man-

ifold. Suppose that {Xi}ni=1 is a Killing frame around x ∈ M for the Finsler

metric F . Then for y = ỹiXi(x) ∈ TMx, the Berwald curvature of F is given

by

B ī
p̄q̄m̄ = −1

2
fp
p̄ f

q
q̄ f

m
m̄ f ī

i

{[
∂yp∂yq∂ymgil(cklj [F

2]ykyj)
]

+
[
∂yq∂ymgil(ckljy

jgkp +
1

2
cklpF

2]yk)
]

+
[
∂yp∂ymgil(ckljy

jgkq +
1

2
cklqF

2]yk)
]

+
[
∂yp∂yqgil(ckljy

jgkm +
1

2
cklmF 2]yk)

]
+
[
∂yp∂yqgkm(ckljy

jgil)
]
+

[
(∂ymgil∂ypgkq + ∂yqgil∂ypgkm

+∂ypgil∂yqgkm)(ckljy
j)
]
+

[
(∂ymgil)(cklpgkq + cklqgkp)

]
+
[
(∂yqgil)(cklpgkm + cklmgkp)

]
+
[
(∂ypgil)(cklqgkm + cklmgkq)

]
+
[
(∂yqgkmcklp + ∂ypgkmcklq + ∂ypgkqc

k
lm)gil

]}
. (3.9)

The mean Berwald curvature of F can be express as follows

Es̄t̄ =
1

4

{[
fs
s̄ f

t
t̄ (∂ys∂ytgilcklj [F

2]ykyjIi)
]
+
[
f t
t̄∂ytgilcklj(2f

s
s̄ gksy

jIi

+fs
s̄ [F

2]ykyj∂ysIi + f j
s̄ [F

2]ykIi)
]
+
[
fs
s̄∂ysgilcklj(2f

t
t̄ gkty

jIi

+f t
t̄ [F

2]ykyj∂ytIi + f j
t̄ [F

2]ykIi)
]
+
[
gilcklj

(
2f j

s̄ f
t
t̄ gktIi

+2fs
s̄ f

t
t̄ gkty

j∂ysIi + 2fs
s̄ f

j
t̄ gksIi + fs

s̄ f
j
t̄ [F

2]yk∂ysIi

+2fs
s̄ f

t
t̄ gksy

j∂ytIi + f j
s̄ f

t
t̄ [F

2]yk∂ytIi + fs
s̄ f

t
t̄ [F

2]yk∂ys∂ytIi
)]}

.(3.10)
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For a two-dimensional plane P ⊂ TxM and y ∈ TxM0, the flag mean Berwald

curvature E(P, y) is defined by

E(P, y) :=
F 3(x, y)Ey(u, u)

gy(y, y)gy(u, u)− [gy(y, u)]2
, (3.11)

where P := span{y, u}. F is called of isotropic mean Berwald curvature if for

any flag (P, y), the following holds

E(P, y) =
n+ 1

2
c ⇐⇒ Eij =

n+ 1

2
cFyiyj ⇐⇒ Eij =

n+ 1

2
cF−1hij ,(3.12)

where c = c(x) is a scalar function on M . We have the following.

Theorem 3.3. Let (M,F ) be an n-dimensional homogeneous Finsler manifold.

Then F has isotropic E-curvature if and only if it has vanishing E-curvature.

Proof. It is proved that, F has isotropic E-curvature E = (n + 1)/2cF−1h

if and only if it has almost isotropic S-curvature S = (n + 1)cF + η, where

η = ηi(x)y
i is a 1-form on M . Let us consider the S-curvature at a fixed

point x. The function ln
√

det(gpq) is homogeneous of degree 0, so it must

reach its maximum or minimum at some nonzero y, where the gradient field

vanishes. Then by (3.8), S(x, y) = 0. If the S-curvature is almost isotropic,

i.e., if S = (n + 1)c(x)F + η, then c(x) = 0. In this case, S = η. Taking two

vertical derivation of it implies that E = 0. □

A Finsler metric F has isotropic Berwald metric if its Berwald curvature is

given by following

By(u, v, w) = cF−1
{
h(u, v)

(
w − gy(w, ℓ)ℓ

)
+ h(v, w)

(
u− gy(u, ℓ)ℓ

)
+h(w, u)

(
v − gy(v, ℓ)ℓ

)
+ 2FCy(u, v, w)ℓ

}
, (3.13)

where c ∈ C∞(M). In this case, F is called an isotropic Berwald metric. It

is obvious that Berwald metrics is a isotropic Berwald metric condition with

c = 0. Geometrically, Berwald metrics are those Finsler metrics which are

affinely equivalent to Riemannian ones.

Corollary 3.4. Let (M,F ) be an n-dimensional homogeneous Finsler mani-

fold. Then F has isotropic Berwald curvature if and only if it has vanishing

Berwald curvature.

Proof. In [9], it is proved that every isotropic Berwald metric (3.13) has isotropic

S-curvature S = (n+1)cF . By Theorem 3.3, we get c = 0. Putting it in (3.13)

implies that B = 0. □

By definition, L/C is regarded as the relative rate of change of C along

Finslerian geodesics. Let (M,F ) be a Finsler manifold. Then, F is called
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relatively isotropic Landsberg metric if it satisfies L+cFC = 0, where c = c(x)

is a scalar function on M . We get the following.

Corollary 3.5. Every homogeneous relatively isotropic Landsberg metric of

isotropic mean Berwald curvature is a Berwald metric.

Proof. Every n-dimensional (n ≥ 3) relatively isotropic Landsberg metric of

isotropic mean Berwald curvature is a isotropic Berwald metric. In [8], it is

proved that every relatively isotropic Landsberg surface (n = 2) of isotropic

mean Berwald curvature is a isotropic Berwald surface. By Corollary 3.4, it

follows that F reduces to a Berwald metric. □

Let (M,F ) be a Finsler manifold. Then, F is called a weakly Douglas metric

if it satisfies

Di
jkl = Tjkly

i, (3.14)

where Tjkl is a Finslerian tensor on M .

Corollary 3.6. Let (M,F ) be an n-dimensional (n ≥ 3) weakly Douglas man-

ifold. Suppose that F has isotropic mean Berwald curvature. Then F is a

Berwald metric.

Proof. Taking vertical derivative from (3.14) with respect to ys, we get

∂Di
jkl

∂ys
=

∂Bi
jkl

∂ys
− 2

n+ 1

{∂Ejk

∂ys
δil +

∂Ekl

∂ys
δij +

∂Elj

∂ys
δik +

∂2Ejk

∂ys∂yl
yi +

∂Ejk

∂yl
δis

}
=

∂T jkl

∂ys
yi + Tjklδ

i
s. (3.15)

Contracting i and s in (3.15) and using the relations

1

2

∂Bs
jkl

∂ys
=

∂Ejk

∂yl
=

∂Ekl

∂yj
=

∂Elj

∂yk
(3.16)

we get

0 =
∂Ds

jkl

∂ys
= (n− 2)Tjkl. (3.17)

Therefore, for n > 2, we get Tjkl = 0 and F is a Douglas metric. By Theorem

3.3, F reduces to a Berwald metric. □

Let (M,F ) be a Finsler manifold. Then, F is called a generalized Douglas-

Weyl metric if its Douglas tensor satisfies

Di
jkl|mym = Tjkly

i (3.18)

that is hold for some tensor Tjkl, whereD
i
jkl|m denotes the horizontal covariant

derivatives of Douglas curvature Di
jkl with respect to the Berwald connection

of F . For a manifold M , let GDW (M) denotes the class of all Finsler metrics
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satisfying in above relation for some tensor Tjkl. It is proved that GDW (M)

is closed under projective changes.

Corollary 3.7. Let F = αϕ(s), s = β/α, be a homogeneous non-Randers type

(α, β)-metric on n-dimensional manifold M (n ≥ 3). Then F is a generalized

Douglas-Weyl metric with isotropic S-curvature if and only if it is a Berwald

metric.

Proof. In [11], it is proved that a non-Randers type (α, β)-metric is a gener-

alized Douglas-Weyl metric with vanishing S-curvature if and only if it is a

Berwald metric. By using Theorem 3.3, we get the proof. □

A Finsler metric F has almost vanishing H-curvature if its non-Riemannian

quantity H satisfies following

H =
n+ 1

2F
θh,

where c = c(x) is a scalar function and θ = θi(x)dx
i is a 1-form on M ([10][12]).

Corollary 3.8. Let F := α + β be a homogeneous Randers metric an n-

dimensional manifold M . Suppose that F has almost vanishing H-curvature.

Then S = 0.

Proof. In [13], Xia proved that a Randers metric has almost vanishing H-

curvature if and only if it has isotropic S-curvature S = (n+1)cF . By Theorem

3.3, we get S = 0. The converse is trivial. □

Corollary 3.9. Let F := α + β be a homogeneous Randers metric of weakly

isotropic flag curvature on a manifold M of dimension n ≥ 3. Let F has

constant flag curvature.

Proof. Let F be of weakly isotropic flag curvature

K =
3θ

F
+ σ, (3.19)

where σ = σ(x) is a scalar function and θ = θi(x)y
i is a 1-form on M . By

Najafi-Shen-Tayebi theorem, F satisfies following

H =
(n2 − 1)θ

2F
(3.20)

where θ = θi(x)dx
i is a 1-form on M . By corollary 3.8, θ = 0. By the Schur

lemma in Finsler geometry, if K = σ(x) is a scalar function on M , then it must

be constant in dimension n ≥ 3. □
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