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1. Introduction

In 1991 M. Matsumoto introduced the concept of (α, β)-metrics [15]. They

form an important and rich class of Finsler metrics that appear on many ap-

plications of mathematics in physics, biology, etc (see [3]). (α, β)-metrics are

defined by a Riemannian metric α :=
√

aijyiyj and a 1-form β := bi(x)y
i. They

have been widely studied by many authors partly because they are computable.

Also, the research on (α, β)-metrics enrich Finsler geometry and suggest many

references for further studies.

The Kropina metric F = α2/β is an (α, β)-metric which was first introduced

by Berwald and was investigated by V.K. Kropina [12]. This metric is very

interesting because it appears when the general dynamical system is represented

by a Lagrangian function [4]. As a geometrical motivation, let us denote an

open sea by a Riemannian manifold (M,h) where a wind W = W i ∂
∂xi blows.

If h(W,W ) = 1, then the paths minimizing time of travel of a ship are the

geodesics of a Kropina metric [28].

For any Finsler metric F and a non-zero 1-form β, one can consider the

β-transformation

F (x, y) → F̄ (x, y) := f(F, β),

where f(F, β) is a positively homogeneous function of β and F . In this paper,

we consider the β-transformation F̄ (x, y) := F 2(x,y)
β(x,y) , named Kropina transfor-

mation of F . It is easy to see that F̄ is reduced to the Kropina metric when F

is reduced to the Riemannian metric α.

The (α, β)-metric F = α exp(s), s := β/α, is called exponential metric and

studied by many authors [20, 22, 27, 30]. This metric is interesting because the

exponential metric

F = α exp(

∫ s

0

q
√
b2 − t2

1 + qt
√
b2 − t2

dt),

is an almost regular unicorn metric, where b := ∥β∥α and q is a constant. A

unicorn metric is a Landsberg metric that is not Berwaldian [23].

This paper is devoted to the study of the Kropina transformation of expo-

nential (α, β)-metric F = α exp(s), s := β/α.

Projectively flat Finsler metrics are the smooth solutions of the Hilbert

fourth problem, in regular cases. (α, β)-metrics of projectively flat type have

been studied by many authors [5, 6, 15, 18, 20, 21, 24, 30]. Locally projectively

flat Kropina metrics are studied in [5]. Exponential (α, β)-metrics of locally

projectively flat type are studied in [30] and it is proved that an exponential

(α, β)-metric F = α exp(s), s := β/α, is locally projectively flat if and only if

α is projectively flat and β is parallel with respect to α.

Now, we obtain the necessary and sufficient conditions under which the

Kropina transformation of exponential (α, β)-metric be locally projectively flat.
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Theorem 1.1. Let F̄ = α exp(2s)/s, s := β/α be an (α, β)-metric on a

manifold M with dimension n ≥ 3, where α is a Riemannian metric and β

is a nonzero 1-form. Then F̄ is locally projectively flat if and only if α is

projectively flat and β is parallel with respect to α.

From Theorem 1.1, we have the following corollary.

Corollary 1.2. Let F̄ = α exp(2s)/s, s := β/α be the Kropina transformation

of exponential (α, β)-metric F = α exp(s). Then F̄ is locally projectively flat if

and only if F is locally projectively flat.

Remarkably, Z. Shen studied locally projectively flat regular (α, β)-metrics

of non-Randers type [20]. It is easy to see that F̄ = α exp(2s)/s, s := β/α is

singular at zero. Thus, this class of (α, β)-metrics is not included in the Shen’s

paper.

Douglas curvature is one of the non-Riemannian quantities which has closely

related to projectively flat Finsler metrics. A Finsler metric is of projectively

flat type if and only if its Douglas curvature and its Weyl curvature vanish.

A Finsler metric with zero Douglas curvature is called Douglas metric. (α, β)-

metrics of Douglas type have been considered by many authors [5, 6, 14, 16, 30].

An exponential (α, β)-metric F = α exp(s), s := β/α, is a Douglas metric if

and only if β is parallel with respect to α [30].

Here, we study Kropina transformation of exponential (α, β)-metrics of Dou-

glas type.

Theorem 1.3. Let F̄ = α exp(2s)/s, s := β/α be an (α, β)-metric on a

manifold M with dimension n ≥ 3, where α is a Riemannian metric and β

is a nonzero one form. Then F̄ is a Douglas metric if and only if β is parallel

with respect to α.

From Theorem 1.3, we have the following corollary.

Corollary 1.4. Let F̄ = α exp(2s)/s, s := β/α be the Kropina transformation

of exponential (α, β)-metric F = α exp(s). Then F̄ is a Douglas metric if and

only if F is a Douglas metric.

The notion of locally dually flat metric was introduced by S. I. Amari and

H. Nagaoka when they were studying the information geometry on Riemannian

manifolds [1, 2].

This notion was extended to Finsler spaces by Z. Shen in [19] and the locally

dually flat Finsler metrics are studied. Finsler metrics of locally dually flat type

have interesting applications in the study of flat Finsler information structure

[7, 8]. Locally dually flat (α, β)-metrics have been mentioned by many authors

[17, 25, 27, 29].

Here, we obtain the necessary and sufficient conditions under which F =

α exp(2s)/s, is locally dually flat.
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Theorem 1.5. Let F̄ = α exp(2s)/s, s := β/α be an (α, β)-metric on a

manifold M with dimension n ≥ 3, where α is a Riemannian metric and β

is a nonzero one form. Then F̄ is a locally dually flat metric if and only if

a) r00 = 2
3 (βθ − α2θlb

l),

b) Gi
α = 1

3 (2θy
i + α2θi),

c) si0 = 1
3 (βθi − θbi),

where θ := θi(x)y
i is a 1-form on M and θl := aliθi.

A large class of (α, β)-metrics of locally dually flat type is considered in [27]

and it is proved that the exponential (α, β)-metric F = α exp(s), s := β/α, is

locally dually flat if and only if Gi
α, rij , and sij satisfy in above conditions.

Therefore, we have the following corollary.

Corollary 1.6. Let F̄ = α exp(2s)/s, s := β/α be the Kropina transformation

of exponential (α, β)-metric F = α exp(s). Then F̄ is locally dually flat if and

only if F is locally dually flat.

2. Preliminaries

For a given Finsler metric F = F (x, y), the geodesic of F satisfies the fol-

lowing system of differential equations:

d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0,

where Gi = Gi(x, y) are called the geodesic coefficients, which are given by

Gi =
1

4
gil

{
[F 2]xmylym − [F 2]xl

}
.

An (α, β)-metric is a Finsler metric expressed in the form, F = αϕ(s), s :=

β/α, where α =
√
aij(x)yiyj is a Riemannian metric, β = bi(x)y

i is a 1-form

with ∥βx∥α < b0, x ∈ M , and ϕ(s) is a C∞ positive function on an open interval

(−b0, b0) satisfying

ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0, |s| ≤ b < b0. (2.1)

In this case, the fundamental form of the metric tensor induced by F is positive

definite [9].

Let

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i)

where bi;j means the coefficients of the covariant derivative of β with respect to

α. Clearly, β is closed if and only if sij = 0, and we say that β is parallel with
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respect to α if rij = sij = 0. Furthermore, we denote

rij := aikrkj , ri0 := rijy
j ,

r00 := rijy
iyj , r := rijb

ibj ,

sij := aikskj , si0 := sijy
j ,

si := bjs
j
i, s0 := siy

i.

The geodesic coefficients Gi of F and geodesic coefficients Gi
α of α are related

as follows

Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}

{
Ψbi +Θα−1yi

}
(2.2)

where

Q =
ϕ

′

ϕ− sϕ′ ,

Θ =
ϕϕ

′ − s(ϕϕ
′′
+ ϕ

′
ϕ

′
)

2ϕ((ϕ− sϕ′) + (b2 − s2)ϕ′′)
,

Ψ =
1

2

ϕ
′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′ .

A Finsler metric is said to be locally projectively flat if at any point there

exists a local coordinate system such that the geodesics are straight lines as

point sets. Hamel [11] found a system of PDEs that characterized projectively

flat Finsler metrics on an open subset in Rn.

Theorem 2.1. [11] A Finsler metric F = F (x, y) on an open subset U ⊂ Rn

is projectively flat if and only if

Fxkylyk − Fxl = 0.

Using Theorem 2.1, the following lemma can be obtained.

Lemma 2.2. [21] An (α, β)-metric F = αϕ(s), s := β/α is projectively flat

on an open subset U ⊂ Rn if and only if

(amlα
2 − ymyl)G

m
α + α3Qsl0 +Ψα(−2αQs0 + r00)(blα− syl) = 0, (2.3)

where ym := amly
l.

The Douglas tensorD of a Finsler metric F is defined byDy := Di
jkl(x, y)dx

j⊗
dxk ⊗ dxl ⊗ ∂

∂xi , where

Di
jkl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)

(2.4)

Douglas tensor is a non-Riemannian quantity, i.e. it vanishes for Riemannian

metrics and it is invariant under the projective transformations.
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In [10] the Douglas tensor of an (α, β)-metric is determined by

Di
jkl =

∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1

∂Tm

∂ym
yi
)

(2.5)

where

T i = αQsi0 +Ψ{−2Qαs0 + r00}bi (2.6)

and

Tm
ym = Q′s0 +Ψ′α−1(b2 − s2)[r00 − 2Qαs0] + 2Ψ

[
r0 −Q′(b2 − s2)s0 −Qss0

]
.(2.7)

A Douglas metric is a Finsler metric with a vanishing Douglas tensor. Let

F = αϕ(s), s := β/α be a Douglas (α, β)- metric, From (2.4) and (2.5) we

have

∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1
Tm
ymyi

)
= 0.

Then there exists a class of scalar functions Hi
jk := Hi

jk(x) such that

T i − 1

n+ 1
Tm
ymyi = Hi

00, (2.8)

where Hi
00 := Hi

jk(x)y
jyk, T i and Tm

ym are given by the relations (2.6) and

(2.7), respectively.

A Finsler metric is called locally dually flat if at any point there is a co-

ordinate system (xi) in which the spray coefficients of F are in the following

form

Gi = −1

2
gijHyj ,

where H = H(x, y) is a local scalar function on the tangent bundle TM of M .

Such a coordinate system is called an adapted coordinate system. A system of

PDEs that characterized dually flat Finsler metrics on an open subset in Rn,

can be found in [19]. In fact, we have the following theorem.

Theorem 2.3. [19] A Finsler metric F = F (x, y) on an open subset U ⊂ Rn

is dually flat if and only if the following equation holds:

[F 2]xkylyk − 2[F 2]xl = 0.

In this case

H =
1

6
[F 2]xmym.

In [26], an equation is obtained that characterizes dually flat (α, β)-metrics.
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Lemma 2.4. [26] An (α, β)-metric F = αϕ(s), s := β/α is dually flat on an

open subset U ⊂ Rn if and only if

3α2amlG
m
α +α3Q(3sl0−rl0)−α2

(
∂(ymGm

α )

∂yl
+ αQ

∂(bmGm
α )

∂yl

)
+
{
2Q(ymGm

α )

+ Φ
(
αr00 + 2(bmα− sym)Gm

α

)}
(αbl − syl) +Qα(r00 + 2bmGm

α )yl = 0, (2.9)

where ri0 := rijy
j , si0 := sijy

j, yi := aijy
j, and

Φ :=
ϕ′2 + ϕϕ′′

ϕ(ϕ− sϕ′)
.

3. Kropina transformation of exponential (α, β)-metrics

In this section, we consider the Kropina transformation of exponential (α, β)-

metric F = α exp(s), i.e.

F̄ = α exp(2s)/s, s := β/α.

Since ϕ(s) = exp(2s)/s must be a positive function, thus s > 0. One can see

that when s > 0, we have the following lemma.

Lemma 3.1. F̄ = α exp(2s)/s, s := β/α, is a Finsler metric, if and only if

0 < ∥βx∥α < 1

Proof. Let F̄ = α exp(2s)/s, s := β/α, is a Finsler metric, then from (2.1) we

have

s3 + 2b2s2 − 2b2s+ b2 − 2s4

s3
> 0.

For s = b, we get 0 < b < 1. Thus 0 < ∥βx∥α < 1. The converse is easy to

prove. □

It is easy to see that, the geodesic coefficients F̄ = α exp(2s)/s, s := β/α,

are given by (2.2) with

Q :=
2s− 1

2s(1− s)
,

Θ :=
s(5s− 4s2 − 2)

2
[
s3(1− 2s) + b2(2s2 − 2s+ 1)

] ,
Ψ :=

2s2 − 2s+ 1

2
[
s3(1− 2s) + b2(2s2 − 2s+ 1)

] . (3.1)
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3.1. Proof of Theorem 1.1. Suppose that F̄ is locally projectively flat. From

(2.3) we have

2β(α− β)
[
b2α2

(
(α− β)2 + β2

)
+ β3(α− 2β)

]
(amlα

2 − ymyl)G
m
α

+ α4
[
(α− β)

[
b2α2

(
3b2β(α− β)− α2

)
+ 4β4

]
+ (b2 − 1)α2β3

]
sl0

+
[
βα2

(
2β2(2α− β) + α2(α− 3β)

)
r00 + α4

(
2β2(3α− 2β)

+ α2(α− 4β)
)
s0

]
(α2bl − βyl) = 0. (3.2)

From (3.2), we get

2
[
α2βb2(α2 + β2) + 3β2(b2α2 − β2)

]
(amlα

2 − ymyl)G
m
α

+ α4
[
4β2(β2 − b2α2)− α2b2(α2 + 2β2)

]
sl0

+ α2
[
β(4β2 + α2)r00 + α2(6β2 + α2)s0

]
(α2bl − βyl) = 0, (3.3)

and

2β2
[
β2(α2 + 2β2)− b2α2(3α2 + 2β2)

]
(amlα

2 − ymyl)G
m
α

+ α4β
[
4b2α2(β2 + α2)− β2(α2 + 4β2)

]
sl0

− βα2
[
β(2β2 + 3α2)r00 + 4α2(β2 + α2)s0

]
(α2bl − βyl) = 0. (3.4)

From (3.3) one can see that (s0bl − sl0b
2)α8 is divisible by β. Thus, there exist

scalar functions ν := νl(x) on M such that

s0bl − sl0b
2 = βνl, (3.5)

for any l := 1, . . . , n.

Multiplying (3.5) by yl, we get νl = sl and then

sl0 =
1

b2
{s0bl − βsl}. (3.6)

Contracting (3.3) by βbl and (3.4) by bl, yields

2β
[
α2βb2(α2 + β2) + 3β2(b2α2 − β2)

]
(α2bm − βym)Gm

α

+ α4β
[
4β2(β2 − α2b2)− α2b2(α2 + 2β2)

]
s0

+ α2β
[
β(4β2 + α2)r00 + α2(6β2 + α2)s0

]
(α2b2 − β2) = 0, (3.7)

and

2β2
[
β2(α2 + 2β2)− b2α2(3α2 + 2β2)

]
(α2bm − βym)Gm

α

+ α4β
[
4b2α2(β2 + α2)− β2(α2 + 4β2)

]
s0

− βα2
[
β(2β2 + 3α2)r00 + 4α2(β2 + α2)s0

]
(b2α2 − β2) = 0. (3.8)
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(3.7)+(3.8) yields

2β2(β2 − α2)
[
(2b2α2 − β2)(α2bm − βym)Gm

α + α2(α2b2 − β2)r00 − α4βs0
]
= 0.

Thus

(2b2α2 − β2)(bmα2 − βym)Gm
α = α2

(
α2βs0 − (α2b2 − β2)r00

)
. (3.9)

From (3.9) we see that (α2bm − βym)Gm
α has the factor α2, i.e. there exists a

function η2 := η2(x, y) on TM such that

(α2bm − βym)Gm
α = α2η2, (3.10)

where η2(x, y) is a homogeneous polynomial of degree two with respect to y.

By substituting (3.10) in (3.9), we have

α2(2b2η2 + b2r00 − 2βs0) = β2(η2 + r00).

Thus, there exists a scalar function γ := γ(x) on M such that

2b2η2 + b2r00 − 2βs0 = β2γ, (3.11)

and

η2 + r00 = α2γ. (3.12)

From (3.11) and (3.12), we get

r00 =
1

b2
{(2α2b2 − β2)γ − 2βs0}. (3.13)

Substituting (3.13) back into (3.9), we have

(2α2 − β2)
[
(α2bm − βym)Gm

α +
1

b2
α2(α2b2 − β2)γ

]
=

1

b2
α2β(3b2α2 − 2β2)s0.

Thus

s0 = 0, (3.14)

(α2bm − βym)Gm
α = − γ

b2
α2(α2b2 − β2). (3.15)

Using (3.6), (3.13) and (3.14), we infer

sl0 = 0, (3.16)

r00 =
γ

b2
{2α2b2 − β2}. (3.17)

Substituting (3.14), (3.15), (3.16) and (3.17) in (3.7), we deduce

1

b2
α2β4(2β2 − α2)(α2b2 − β2)γ = 0. (3.18)

Since
1

b2
α2β4(2β2 − α2)(α2b2 − β2) ̸= 0,

thus we get

γ = 0

and therefore

r00 = 0. (3.19)
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From (3.16) and (3.19), we obtained that β is parallel with respect to α.

Substituting (3.14), (3.16), and (3.18) into (3.3), we conclude that

(amlα
2 − ymyl)G

m
α = 0,

therefore α is projectively flat [13].

Now let α be projectively flat and β be parallel with respect to α. From

(2.2) one can see that F̄ is locally projectively flat. The proof is complete. □

In the proof of Theorem 1.3, for simplicity, we assume that λ := 1
n+1 .

3.2. Proof of Theorem 1.3. The proof of sufficiency is obvious. Therefore,

we just need to prove the necessity conditions. If F̄ be a Douglas metric, then

(2.8) holds. Plugging (3.1) into (2.8), we obtain

Ai
11α

11 +Ai
10α

10 + · · ·+Ai
1α+Ai

0

P9α9 + P8α8 + · · ·+ P1α+ P0
= Hi

00, (3.20)

where

Ai
11 := b2(b2si0 − bis0),

Ai
10 := −6b2β(b2si0 − bis0),

Ai
9 := 16b2β2(b2si0 − bis0) + 2λb2βyi(r0 + s0)− b2βbir00,

Ai
8 := β3(1− 24b2)(b2si0 − bis0)− λb2β2yi(10r0 + 13s0)

+ b2β2(βsi0 + 5bir00),

Ai
7 := 2β4(10b2 − 3)(b2si0 − bis0) + 24λb2β3yi(r0 + 2s0)

− 6b2β3(βsi0 + 2bir00),

Ai
6 := 2β5[(7− 4b2)(b2si0 − bis0) + 7b2si0]− β3[(1− 16b2)βbi

+ 3λb2yi]r00 + λβ4yi[(1− 14b2)(2r0 + 5s0)− 4b2r0],

Ai
5 := β6[−16(2b2si0 − bis0) + si0] + β4[(5− 15b2)βbi + 15λb2yi]r00

+ 2λβ5yi[−(5r0 + 14s0) + 6b2(2r0 + 5s0)],

Ai
4 := 2β7[4(b2si0 − bis0)− 3si0] + β5r00[2(2b

2 − 5)βbi

+ (3− 26b2)λyi] + 2λβ6yi[(10r0 + 29s0)− 4b2(r0 + 3s0)],

Ai
3 := −4λβ7yi(5r0 + 14s0) + λβ6yir00(22b

2 − 15)

+ 2β7(5bir00 + 6βsi0),

Ai
2 := 8λβ8yi(r0 + 3s0) + 2λβ7yir00(13− 8b2)− 4β8(r00 + 2βsi0),

Ai
1 := −22λyiβ8r00,

Ai
0 := 8λyiβ9r00,
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and

P9 := −2b4β, P8 := 10b4β2,

P7 := −24b4β3, P6 := −4b2β4(1− 8b2),

P5 := 4b2β5(5− 6b2), P4 := −8b2β6(5− b2),

P3 := −2β7(1− 20b2), P2 := 2β8(5− 8b2),

P1 := −16β9, P0 := 8β10.

Equation(3.20) is equivalent to

Ai
11α

11 +Ai
10α

10 + · · ·+Ai
1α+Ai

0 =

Hi
00(P9α

9 + P8α
8 + · · ·+ P1α+ P0). (3.21)

Replacing yi by −yi in (3.21) yields

−Ai
11α

11 +Ai
10α

10 + · · · −Ai
1α+Ai

0 =

Hi
00(−P9α

9 + P8α
8 + · · · − P1α+ P0). (3.22)

(3.21)+(3.22) implies that

Ai
10α

10 +Ai
8α

8 + · · ·+Ai
2α

2 +Ai
0 =

Hi
00(P8α

8 + P6α
6 + · · ·+ P2α

2 + P0). (3.23)

Also, from (3.21)− (3.22) we have

Ai
11α

10 +Ai
9α

8 + · · ·+Ai
3α

2 +Ai
1 =

Hi
00(P9α

8 + P7α
6 + · · ·+ P3α

2 + P1). (3.24)

From (3.23) and (3.24), we get

Ai
0 −Hi

00P0 := 8β9(λyir00 −Hi
00β),

and

Ai
1 −Hi

00P1 := −2β8(11λyir00 + 8βHi
00),

have the factor α2. Therefore we obtained that r00 and Hi
00 have the factor α2.

Thus there exist scalar functions σ := σ(x) and ηi := ηi(x) on M such that

r00 = σα2, (3.25)

Hi
00 = ηiα2, (3.26)

where i ∈ {1, 2, . . . , n}. From (3.25), we have

r0 = βσ. (3.27)

On the other hand from (3.21), one can see that Ai
11α

11 = b2(b2si0 − bis0)α
11

has the factor β. Therefore there exist scalar functions ξ := ξi(x) on M such

that

b2si0 − bis0 = βξi, (3.28)
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where i ∈ {1, 2, . . . , n}. Multiplying (3.28) by yi, we get ξiyi = s0, thus

ξi = si. (3.29)

Substituting (3.29) in (3.28), we obtain

sij =
1

b2
{bisj − bjsi}. (3.30)

Substituting (3.25), (3.26), (3.27) and (3.30) into (3.21), we get

Bi
9α

9 +Bi
8α

8 + · · ·+Bi
1α+Bi

0 = ηi(Q9α
9 +Q8α

8 + · · ·+Q1α+Q0),(3.31)

where

Bi
9 := b4(si + biσ),

Bi
8 := −b4β(6si + 5biσ),

Bi
7 := 4b4β2(4si + 3biσ)− 2λb4yi(βσ + s0),

Bi
6 := b2β2bi[(1− 16b2)βσ − s0] + 2(1− 12b2)b2β2si

+ 13λb2βyi(s0 + βσ),

Bi
5 := b2β3bi[(12b2 − 5) + 6s0] + 4b2(5b2 − 3)β4si

− λb4β2yi(39βσ + 42s0),

Bi
4 := 2b2β4bi[(5− 2b2)βσ − 7s0]− 5λb2β3yi(s0 + βσ)

+ 4b2β5si(7− 2b2) + 2λb4β3yi(29βσ + 35s0),

Bi
3 := λb2β4yi[4(7− 15b2)s0 + βσ(25− 46b2)]

+ β5bis0(1 + 16b2 − 10βb2σ) + (1− 32b2)β6si,

Bi
2 := 2λb2β5yi[(8b2 − 23)βσ + (12b2 − 29)s0]

+ 2β6bi[2b2βσ + (3− 2b2)s0] + 2(8b2 − 3)β7si,

Bi
1 := 14λb2β6yi(3βσ + 4s0) + 12β7(βsi − bis0),

Bi
0 := −8λb2β7yi(2βσ + 3s0)− 8β8(βsi − bis0),

and

Q9 := 2b6, Q8 := −10b6β,

Q7 := 24b6β2, Q6 := −4b4β3(8b2 − 1),

Q5 := 4b4β4(6b2 − 5), Q4 := −8b4β5(b2 − 5),

Q3 := −2b2β6(20b2 − 1), Q2 := −2b2β7(8b2 − 5),

Q1 := 16b2β8, Q0 := −8b2β9.

Replacing yi by −yi into (3.31) yields

Bi
9α

9 −Bi
8α

8 + · · ·+Bi
1α−Bi

0 = ηi(Q9α
9 −Q8α

8 + · · ·+Q1α−Q0).(3.32)
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By adding (3.31) and (3.32), we have

Bi
9α

8 +Bi
7α

6 +Bi
5α

4 +B3α
2 +Bi

1 =

ηi(Q9α
8 +Q7α

6 +Q5α
4 +Q3α

2 +Q1). (3.33)

From (3.33) one can see that

Bi
1 − ηiQ1 = β6

[
7λb2yi(8s0 + 6βσ) + 12β(βsi − bis0)− 16b2βηi

]
,

that has the factor α2, i.e. there exist scalar functions ωi := ωi(x) on M such

that

7λb2yi(8s0 + 6βσ) + 12β(βsi − bis0)− 16b2β2ηi = α2ωi, (3.34)

where i ∈ {1, 2, . . . , n}. Multiplying (3.34) by bi and yi leads to

β[7λb2(8s0 + 6βσ)− 12b2s0 − 16b2βηibi] = α2ωibi, (3.35)

and

α2[7λb2(8s0 + 6βσ)− ωiyi] = 16b2β2ηiyi, (3.36)

respectively. From (3.35), we deduce

ωibi = 0, (3.37)

7λb2(8s0 + 6βσ)− 12b2s0 − 16b2βηibi = 0, (3.38)

and from (3.36), we have

7λb2(8s0 + 6βσ)− ωiyi = 0. (3.39)

From (3.39), we obtain

ηi = 0, (3.40)

7λb2(8si + 6biσ) = ωi, (3.41)

where

ηi := ηjaji, ωi := ωjaji.

Multiplying (3.41) by bi and using (3.37), we find

σ = 0. (3.42)

Thus

r00 = 0, (3.43)

also from (3.40) we conclude that

Hi
00 = 0.

Substituting (3.40) and (3.42) into (3.38), we obtain

(14λ− 12)b2βs0 = 0.

Since 14λ− 12 ̸= 0, thus s0 = 0, and then from (3.30), we have

sij = 0. (3.44)
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From (3.43) and (3.44), we have that β is parallel with respect to α. Thus the

proof is complete. □

3.3. Proof of Theorem 1.5. Suppose that F̄ is locally dually flat. From (2.9)

we have

Alα
6 +Blα

5 + Clα
4 +Dlα

3 + Elα
2 +Mlα+Nl = 0, (3.45)

where

Al := β
∂bmGm

α

∂yl
+ 6bmGm

α bl + β(rl0 − 3sl0) + 3r00bl,

Bl := −2β2 ∂bmGm
α

∂yl
− 16βbmGm

α bl − 8βr00bl − 2β2(rl0 − 3sl0),

Cl := −2β2 ∂ymGm
α

∂yl
− 8βymGm

α bl + 16β2bmGm
α bl − 8βbmGm

α yl

+ 4β(2βbl − yl)r00 + 6amlG
m
α β2,

Dl := 2β3 ∂y
mGm

α

∂yl
+ 20β2ymGm

α bl + 20β2bmGm
α yl − 6β3amlG

m
α

+ 10β2r00yl,

El := −16β3ymGm
α bl + 8β2ymGm

α yl − 16β3bmGm
α yl − 8β3r00yl,

Ml := −20ymGm
α β3yl,

Nl := 16ymGm
α β4yl.

From (3.45) and by noticing that the sum of odd powers and even powers of α

are zero respectively, we have

Alα
6 + Clα

4 + Elα
2 +Nl = 0, (3.46)

Blα
4 +Dlα

2 +Ml = 0. (3.47)

Contracting (3.46) and (3.47) with bl, we get

Aα6 + Cα4 + Eα2 +N = 0, (3.48)

Bα4 +Dα2 +M = 0. (3.49)

where

A := β
∂bmGm

α

∂yl
bl + 6b2bmGm

α + β(r0 − 3s0) + 3b2r00,

B := −2β2 ∂bmGm
α

∂yl
bl − 16βb2bmGm

α − 8βb2r00 − 2β2(r0 − 3s0),

C := −2β2 ∂ymGm
α

∂yl
bl − 8b2βymGm

α − 16b2β2Gm
α bm − 2β2bmGm

α

+4(2b2 − 1)β2r00,
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D := 2β3 ∂y
mGm

α

∂yl
bl + 20β2b2ymGm

α + 14β3bmGm
α + 10β3r00,

E := −16b2β3ymGm
α + 8β3ymGm

α − 16β4bmGm
α − 8β4r00,

M := −20β4ymGm
α ,

N := 16β5ymGm
α .

From (3.48)×5+(3.49)×4β we have[
5β

∂bmGm
α

∂yl
bl + 30b2bmGm

α + 15b2r00 + 5β(r0 − 3s0)
]
α4 −

[
10β2 ∂ymGm

α

∂yl
bl

+ 8β3 ∂bmGm
α

∂yl
bl + 40βb2ymGm

α + 2(5− 8b2)β2bmGm
α + 4(5− 2b2)β2r00

+ 8β3(r0 − 3s0)
]
α2 + 8β4 ∂ymGm

α

∂yl
bl + 40β3ymGm

α − 24β4bmGm
α = 0. (3.50)

Rewriting (3.48) and (3.50) yields that

βα6 ∂bmGm
α

∂yl
bl − 2β2α4 ∂ymGm

α

∂yl
bl = −

[
β(r0 − 3s0) + 3b2(r00 + 2ymGm

α )
]
α6

+
[
2(1− 8b2)β2bmGm

α + 8b2β2ymGm
α + 4(1− 2b2)β2r00

]
α4

+
[
8β4r00 + 8β3(2b2 − 1)ymGm

α + 16β4ymGm
α

]
α2 − 16β5ymGm

α , (3.51)

and

βα2
[
5α2 − 8β2

]∂bmGm
α

∂yl
bl − 2β2

[
5α2 − 4β2

]∂ymGm
α

∂yl
bl = −

[
5β(r0 − 3s0)

+ 15b2(r00 + 2bmGm
α )

]
α4 +

[
40b2βymGm

α + 2(5− 8b2)β2bmGm
α

+ 4(5− 2b2)β2r00 + 8β3(r0 − 3s0)
]
α2 − 40β3ymGm

α + 24β4bmGm
α . (3.52)

From (3.51)× (5α2 − 8β2)− (3.52)× α4, we have

β2α4
[∂ymGm

α

∂yl
bl − 3bmGm

α

]
=
[
β2α2(1 + 8b2)− b2α4 − 8β4

]
×

(
α2r00 + 2α2bmGm

α − 2βymGm
α

)
. (3.53)

From (3.53), one can see that β2α2(1 + 8b2) − b2α4 − 8β4 can not be divided

by α4, thus α2r00 + 2α2bmGm
α − 2βbmGm

α is divided by α4, i.e. there exists a

scalar function η := η(x) on M such that

α2r00 + 2α2bmGm
α − 2βymGm

α = α4η. (3.54)

On the other hand from (3.48), we have that r00 +2bmGm
α is divided by β and

therefore from (3.54) we have that η = 0. Thus

∂ymGm
α

∂yl
bl = 3bmGm

α , (3.55)

α2r00 + 2α2bmGm
α = 2βymGm

α . (3.56)
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From (3.56) we conclude that

ymGm
α = α2θ, (3.57)

where θ = θi(x)y
i is a one form on M .

Substituting (3.57) in (3.55), yields

bmGm
α =

1

3

(
2βθ − α2θlb

l
)
. (3.58)

From (3.56) and (3.58), we have

r00 =
2

3

(
βθ − α2θlb

l
)
. (3.59)

From (3.59) one can see that

rl0 =
2

3

{
blθ + βθl − 2θkb

kyl

}
, (3.60)

By substituting (3.57)-(3.60) in (3.46) and (3.47), we have

6βamlG
m
α = α2blθ + α2βθl + 3α2sl0 + 4βθyl, (3.61)

and

6βamlG
m
α = 2α2blθ + 6α2sl0 + 4βθyl, (3.62)

respectively.

From (3.62)− (3.61), we deduce

sl0 :=
1

3

{
βθl − θbl

}
. (3.63)

From (3.61), (3.62), and (3.63), we conclude

amlG
m
α =

1

3

{
α2θl + 2θyl

}
,

thus

Gm
α =

1

3

{
α2θm + 2θyl

}
,

therefore sufficient conditions are proved. The converse can be proved by a

direct calculation. □
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