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1. Introduction

In 1991 M. Matsumoto introduced the concept of (e, 5)-metrics [15]. They
form an important and rich class of Finsler metrics that appear on many ap-
plications of mathematics in physics, biology, etc (see [3]). («, 8)-metrics are
defined by a Riemannian metric o := y/a;;y'y7 and a 1-form 8 := b;(x)y’. They
have been widely studied by many authors partly because they are computable.
Also, the research on (a, 8)-metrics enrich Finsler geometry and suggest many
references for further studies.

The Kropina metric F = a?/f is an («, 3)-metric which was first introduced
by Berwald and was investigated by V.K. Kropina [12]. This metric is very
interesting because it appears when the general dynamical system is represented
by a Lagrangian function [4]. As a geometrical motivation, let us denote an
open sea by a Riemannian manifold (M, h) where a wind W = W* a?ci
If h(W,W) = 1, then the paths minimizing time of travel of a ship are the
geodesics of a Kropina metric [28].

blows.

For any Finsler metric F' and a non-zero 1-form 3, one can consider the
[S-transformation

F(Jj,y) —>F(1‘,y) = f(F,,B),

where f(F,f) is a positively homogeneous function of 8 and F'. In this paper,
F2(z,y)
3 B(z,y) ’
mation of F'. It is easy to see that F' is reduced to the Kropina metric when F'

is reduced to the Riemannian metric a.

The («, 8)-metric F' = aexp(s), s := B/a, is called exponential metric and
studied by many authors [20, 22, 27, 30]. This metric is interesting because the
exponential metric

we consider the S-transformation F(z,y) := named Kropina transfor-

S /
F = aexp(/ udt),
0 1+qt\/b2 — 2
is an almost regular unicorn metric, where b := |||, and ¢ is a constant. A
unicorn metric is a Landsberg metric that is not Berwaldian [23].

This paper is devoted to the study of the Kropina transformation of expo-
nential (a, 8)-metric F = avexp(s), s := B/a.

Projectively flat Finsler metrics are the smooth solutions of the Hilbert
fourth problem, in regular cases. («, 8)-metrics of projectively flat type have
been studied by many authors [5, 6, 15, 18, 20, 21, 24, 30]. Locally projectively
flat Kropina metrics are studied in [5]. Exponential («, 8)-metrics of locally
projectively flat type are studied in [30] and it is proved that an exponential
(ar, B)-metric F = avexp(s), s:= f/a, is locally projectively flat if and only if
a is projectively flat and 3 is parallel with respect to a.

Now, we obtain the necessary and sufficient conditions under which the
Kropina transformation of exponential («, 5)-metric be locally projectively flat.
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Theorem 1.1. Let F = aexp(2s)/s, s := B/a be an (a,)-metric on a
manifold M with dimension n > 3, where « is a Riemannian metric and S
is a nonzero 1-form. Then F is locally projectively flat if and only if o is
projectively flat and B is parallel with respect to c.

From Theorem 1.1, we have the following corollary.

Corollary 1.2. Let F' = aexp(2s)/s, s := 3/a be the Kropina transformation
of exponential (o, B)-metric F = aexp(s). Then F is locally projectively flat if
and only if F is locally projectively flat.

Remarkably, Z. Shen studied locally projectively flat regular («, 3)-metrics
of non-Randers type [20]. It is easy to see that F' = aexp(2s)/s, s := f/a is
singular at zero. Thus, this class of («, 8)-metrics is not included in the Shen’s
paper.

Douglas curvature is one of the non-Riemannian quantities which has closely
related to projectively flat Finsler metrics. A Finsler metric is of projectively
flat type if and only if its Douglas curvature and its Weyl curvature vanish.
A Finsler metric with zero Douglas curvature is called Douglas metric. («, §)-
metrics of Douglas type have been considered by many authors [5, 6, 14, 16, 30].
An exponential («, 8)-metric F = aexp(s), s := S/a, is a Douglas metric if
and only if 8 is parallel with respect to a [30].

Here, we study Kropina transformation of exponential («, 8)-metrics of Dou-

glas type.

Theorem 1.3. Let F = aexp(2s)/s, s := fB/a be an (a,[)-metric on a
manifold M with dimension n > 3, where a is a Riemannian metric and 3
is a nonzero one form. Then F is a Douglas metric if and only if 5 is parallel
with respect to .

From Theorem 1.3, we have the following corollary.

Corollary 1.4. Let F' = aexp(2s)/s, s := 3/a be the Kropina transformation
of exponential (o, B)-metric F = aexp(s). Then F is a Douglas metric if and
only if F is a Douglas metric.

The notion of locally dually flat metric was introduced by S. I. Amari and
H. Nagaoka when they were studying the information geometry on Riemannian
manifolds [1, 2].

This notion was extended to Finsler spaces by Z. Shen in [19] and the locally
dually flat Finsler metrics are studied. Finsler metrics of locally dually flat type
have interesting applications in the study of flat Finsler information structure
[7, 8]. Locally dually flat («, 8)-metrics have been mentioned by many authors
[ y =9y &l ]

Here, we obtain the necessary and sufficient conditions under which F' =
aexp(2s)/s, is locally dually flat.
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Theorem 1.5. Let F = aexp(2s)/s, s := B/a be an (a,)-metric on a
manifold M with dimension n > 3, where « is a Riemannian metric and S
is a nonzero one form. Then F is a locally dually flat metric if and only if

a) rog = 2(59 —a26;bl),
b) Gi, = %(29yi + a26i),
¢) sio = 3(86; — 0b;),
where 0 := 0;(x)y’ is a 1-form on M and 6' := a''0;.

A large class of («, 8)-metrics of locally dually flat type is considered in [27]
and it is proved that the exponential («, 8)-metric F' = aexp(s), s := f/q, is
locally dually flat if and only if G, r;;, and s;; satisfy in above conditions.
Therefore, we have the following corollary.

Corollary 1.6. Let F' = aexp(2s)/s, s := 3/« be the Kropina transformation
of exponential (a, B)-metric F = aexp(s). Then F is locally dually flat if and
only if F is locally dually flat.

2. Preliminaries

For a given Finsler metric F' = F(x,y), the geodesic of F satisfies the fol-
lowing system of differential equations:

d2
2

+26'(x, Z—f) —0,

where G = G%(x,y) are called the geodesic coefficients, which are given by

¢ = 30 [Py — (7))

An (o, 8)-metric is a Finsler metric expressed in the form, F' = a¢(s), s:=
B/a, where a = \/a;j(x)y’yl is a Riemannian metric, 8 = b;(x)y" is a 1-form
with ||Bz]la < bo, z € M, and ¢(s) is a C'*° positive function on an open interval
(—bo, by) satisfying

1"

B(s) — 59 (s) + (0> — s2)¢ () >0, |s| <b< by. (2.1)

In this case, the fundamental form of the metric tensor induced by F' is positive
definite [9].

Let
1 1
5 (i +bji), sij = 5
where b;; means the coefficients of the covariant derivative of 8 with respect to
a. Clearly, 3 is closed if and only if s;; = 0, and we say that 3 is parallel with

rij =

big — bjs)
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respect to « if r;; = s;; = 0. Furthermore, we denote

i . ik - J
'I"j.—CL Tkj, Ti0 ‘= Ty,
- i, — i17
Too = Tijy'y’, r =10,
i . ik - J
§4 = a Skj, Si0 ‘= SizY”,
- J — i
S; = bjSZ-, S0 ‘= SiY .

The geodesic coefficients G* of F' and geodesic coefficients G?, of a are related
as follows

G' =G +aQs'y + {—2Qas + Too}{\llbi + @oflyi} (2.2)
where
__¢
Q="
o__ #0 —s(69" +6'6)
20((¢ — s¢") + (b — s%)¢")’
vt il

2(¢—s¢") + (b* = s?)¢"
A Finsler metric is said to be locally projectively flat if at any point there
exists a local coordinate system such that the geodesics are straight lines as
point sets. Hamel [11] found a system of PDEs that characterized projectively
flat Finsler metrics on an open subset in R".

Theorem 2.1. [11] A Finsler metric F' = F(x,y) on an open subset U C R"
is projectively flat if and only if

kaylyk - le =0.
Using Theorem 2.1, the following lemma can be obtained.

Lemma 2.2. [21] An (o, f)-metric F = a¢(s), s := [/« is projectively flat
on an open subset U C R™ if and only if

(amie® — ymy) Gt + &*Qs10 + Yo —2aQso + roo) (i — sy) =0, (2.3)

where Y, = amiy'.

The Douglas tensor D of a Finsler metric F'is defined by D,, := Dijkl (z,y)dr? @
dz* @ do' @ -2, where

Ozt
Z. o .1 aGm

Douglas tensor is a non-Riemannian quantity, i.e. it vanishes for Riemannian

metrics and it is invariant under the projective transformations.
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In [10] the Douglas tensor of an («, 8)-metric is determined by
. 93 : 1 91™ |
D= |T"———— 2.5
TR Dy oyt oyt ( n+19y™ 4 ) (25)
where
T = aQs’y + ¥{—2Qasg + oo }b’ (2.6)
and

Ty = Q'so+ ¥a™ (b* — s%)[roo — 2Qaso] 4 2V [rg — Q' (> — 5%)so — Qsso] (2.7)

A Douglas metric is a Finsler metric with a vanishing Douglas tensor. Let
F = a¢(s), s := B/a be a Douglas («, 5)- metric, From (2.4) and (2.5) we
have

873 Ti,LTm U
Oy Oyk oyt n+1 yr¥ | =

Then there exists a class of scalar functions H;:k = H]’k(x) such that

i 1 i i
T — mTymy = .13’007 (28)
where H{, := H}k(x)yjy’“, T and T,n are given by the relations (2.6) and
(2.7), respectively.

A Finsler metric is called locally dually flat if at any point there is a co-
ordinate system (z°) in which the spray coefficients of F are in the following
form

where H = H(z,y) is a local scalar function on the tangent bundle TM of M.
Such a coordinate system is called an adapted coordinate system. A system of
PDEs that characterized dually flat Finsler metrics on an open subset in R™,
can be found in [19]. In fact, we have the following theorem.

Theorem 2.3. [19] A Finsler metric F = F(x,y) on an open subset Y C R™
is dually flat if and only if the following equation holds:

[Fz]wkyzyk - 2[F2]zz =0.

In this case
1
H = E[FQ]xmym~

In [26], an equation is obtained that characterizes dually flat («, 3)-metrics.
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Lemma 2.4. [26] An (o, 8)-metric F = ad(s), s := B/a is dually flat on an
open subset U C R™ if and only if

3020, GM 40> Q(3510—110) — (8( .

+ <I>(ar00 + 2(bpa — sym)Ggf) }(abl —sy;) + Qa(roo + 2b, Gy =0, (2.9)
where Tio 2= T30, Si0 = iy’ , Yi = ai;y?, and

® - ¢/2 +¢¢//

¢(¢ = s¢')

3. Kropina transformation of exponential (a, §)-metrics

In this section, we consider the Kropina transformation of exponential («, 3)-
metric F' = aexp(s), i.e.

F = aexp(2s)/s, s:= /.

Since ¢(s) = exp(2s)/s must be a positive function, thus s > 0. One can see
that when s > 0, we have the following lemma.

Lemma 3.1. F = aexp(2s)/s, s := f/a, is a Finsler metric, if and only if
0 <|[[Balla <1

Proof. Let F = aexp(2s)/s, s:= f3/a, is a Finsler metric, then from (2.1) we
have
s3 +2b%s% — 20?5 + b? — 2s?

> 0.
53

For s = b, we get 0 < b < 1. Thus 0 < ||8s|la < 1. The converse is easy to
prove. (I

It is easy to see that, the geodesic coefficients F' = aexp(2s)/s, s := B/a,
are given by (2.2) with

25 -1
Q= 25(1—s)’
O .- 5(bs — 452 — 2) ’
2[33(1 — 25) + b2(252 — 25 + 1)}
2 _
T 25 —2s5+1 (3.1)

2[33(1 — 25) + b2(252 — 25 + 1)} '
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3.1. Proof of Theorem 1.1. Suppose that F is locally projectively flat. From
(2.3) we have

26(a — B) [120? (0 = B)% + B2) + B*(a — 26) | (amio® — )G
+at[(a = B)[1%a* (302B(a - B) — a®) + 48] + (17 — 1)a?8°] o
+ [Ba? (26220 — B) + 0%(a = 38))ro0 + 0 (26%(3a — 25)
+ (e —48))so] (b — By) = 0. (3.2)
From (3.2), we get
20?87 (0” + 8) + 387 (1%0” — 5)] (a0 — ) G
+at[452(8% — %a?) — a?*(a? +26%)|su
+a?[BAB? + a?)roo + a%(667 + a)so | (% — By) = 0, (3.3)
and
262 [8%(a® +26%) — b*a®(3® + 26%)] (amia® — Ymy)) Gy
+ o' B[4b%a* (B + o) — B (a® + 487)] si0
— Ba®[B(26° + 3a%)rop + 4a” (8% + a®)so| (@%b — Byr) = 0. (3.4)

From (3.3) one can see that (sob; — si0b%)a® is divisible by 8. Thus, there exist
scalar functions v := y;(z) on M such that

Sobl — Sl()b2 = ﬂl/l, (35)

forany [ :=1,...,n.
Multiplying (3.5) by ¢!, we get v; = s; and then

Si0 = b%{S()bl — ﬂSl}. (36)
Contracting (3.3) by 8b' and (3.4) by b, yields
268[a”Bb? (0 + 5°) + 382 (b*a” — 5°)] (@®bim — Bym)GY
T (X4,6[4ﬁ2(62 _ 04262) _ a2b2(a2 T 262)] S0
+ &®B[B(AB% + &®)roo + (687 + a?)so | (a®b* — B7) =0, (3.7)
and
262 [3%(0® +26%) — b?a(30” + 26)] (a®bm — Bym) G
+a*p [41)20[2(52 +a?) - B%a? + 4[32)] 50
— Ba”[B(2B° + 30®)roo + 40” (8% + o®)sp| (b a® — B%) = 0. (3.8)
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(3.7)+(3.8) yields
26%(B% — a?) [(2b2a2 — B (a?byy — BYm)G™ + a2 (?b% — %o — a4Bso] =0.
Thus

(26°0% — %) (bma® — Bym)Gi = o® (a”Bso — (@b — B7)roo). (3.9)

From (3.9) we see that (a?b,, — Bym)G™ has the factor a2, i.e. there exists a
function 7y := n2(z,y) on TM such that

(@b, — Bym)G™ = a1, (3.10)

where 72(z,y) is a homogeneous polynomial of degree two with respect to y.
By substituting (3.10) in (3.9), we have

o?(26%1 + b*roo — 2Bs0) = (02 + 7o)

Thus, there exists a scalar function 7 := (x) on M such that

20715 + b2ro0 — 2Bs0 = 57, (3.11)
and
N2 + ro0 = a’. (3.12)
From (3.11) and (3.12), we get
1
00 = 33 (20°b? — 5%)y — 2850} (3.13)

Substituting (3.13) back into (3.9), we have

(202 — %) |(a®by, — Bym)Go' + b%ozz(aQb2 — 62)7} = loz2,6’(3bQon — 2,6’2)30.

b2
Thus
S0 = 0, (314)
i
(&Pbyy, — Bym )G = —b—2a2(042b2 5?) (3.15)
Using (3.6), (3.13) and (3.14), we infer
s10 = 0, (3.16)
roo = b%{za%z — B}, (3.17)
Substituting (3.14), (3.15), (3.16) and (3.17) in (3.7), we deduce
1
b—2a254(252 —a?)(a®V? — By = 0. (3.18)
Since 1
028287 — %) (0% — %) £0,
thus we get

and therefore
Too = 0. (319)
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From (3.16) and (3.19), we obtained that g is parallel with respect to a.
Substituting (3.14), (3.16), and (3.18) into (3.3), we conclude that

m __

(amie® — Ymy) G = 0,

therefore « is projectively flat [13].
Now let a be projectively flat and § be parallel with respect to a. From
(2.2) one can see that F is locally projectively flat. The proof is complete. [
In the proof of Theorem 1.3, for simplicity, we assume that A := %ﬂ
3.2. Proof of Theorem 1.3. The proof of sufficiency is obvious. Therefore,
we just need to prove the necessity conditions. If F' be a Douglas metric, then
(2.8) holds. Plugging (3.1) into (2.8), we obtain
Aljatt + Algald + -+ Ala + A)
P9a9+P8a8+--~+P1a+P0

= Hyy, (3.20)

where

Al = b2 (b%s'y — b's),

Al = —6b?B(b*s%y — bisg),

Al = 16782 (b?s"y — b'sg) + 2% By’ (ro + so) — b?Bb'roo,

Al = B3(1 — 24b%)(b*s'y — b'sg) — Ab* %y (10 + 13s¢)
+b?8%(Bs'y + 5b'r0o),

L= 284100 — 3)(b?s’y — b'so) + 24\b* B3y (1o + 250)

— 6b253(6si0 + 2bi7‘00),

Al = 28%[(7 — 4b?) (V5" — blsg) + Th%s' ] — B3[(1 — 16b%)3b°
+ 3\b2y o0 + A8 (1 — 14b%) (20 + 5so) — 4bro),

AL = BO[—16(20%s'y — b'sg) + 5°o] + BA(5 — 156%) 80" + 15Ab%y |r00
+ 20B%y [ (5ro + 14s0) + 602 (2rg + 5s0)],
Al = 2B7[4(b%s% ) — b'sg) — 35 o] + B°ro0[2(26% — 5)3b°
+ (3 = 26b%) Ay'] + 208%9 (107 + 29s0) — 4b% (o + 350)],
Al = 4By (5rg + 1450) + A\B%y'roo(226% — 15)
+ 287 (5b'rgo + 68s%),
Ab = 8AB% (ro + 3s0) + 2A87y"ro0 (13 — 8b%) — 45%(roo + 285"),
Af = —22)y' 810,
Afy = 8My'B7roo,
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and
Py := —2b*33, Py := 100*B?,
Pr = —24b*33, Ps := —4b%5%(1 — 8b?),
Py := 4b%35(5 — 6b%), Py = —8b23%(5 — b?),
Py = —2537(1 — 20b%), Py :=2p%(5 — 8b?),
P = —164", Py = 8310,

Equation(3.20) is equivalent to
Ao + Aot 4+ Ala + AL =
Hiy(Poa® + Psa® + -+ + Pla+ Py).  (3.21)
Replacing y* by —y* in (3.21) yields
A+ Algat® - Al 4 Al =
Hio(—=Pya® + Psa® + -+ — Pra+ Py). (3.22)
(3.21)+(3.22) implies that
Alga!® + ALa® + - 4 Aba® + Al =
HéO(P8a8+P6a6+-~-+P2a2 +P0) (323)
Also, from (3.21) — (3.22) we have
Al ot + Aba® 4+ AL + AL =
Ho(Pya® + Pra® +--- 4+ Psa® + Py).  (3.24)
From (3.23) and (3.24), we get
Ap — HyoPo := 85°(\y'ro0 — Hyo ),
and
Al — HigPy = —2%(11\y"ro0 + 8B8Hy),

have the factor a?. Therefore we obtained that rog and H(, have the factor .
Thus there exist scalar functions o := o(z) and n* := n’(x) on M such that

rog = oa?, (3.25)
Hiy, =n'a? (3.26)

where i € {1,2,...,n}. From (3.25), we have
ro = fBo. (3.27)

On the other hand from (3.21), one can see that A%;a!! = b2(b%s?; — bisg)al!
has the factor 3. Therefore there exist scalar functions ¢ := £!(z) on M such
that

b%s'y —b'so = BE, (3.28)
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where i € {1,2,...,n}. Multiplying (3.28) by v;, we get £'y; = sq, thus
=5 (3.29)
Substituting (3.29) in (3.28), we obtain
51y = b%{bisj i) (3.30)
Substituting (3.25), (3.26), (3.27) and (3.30) into (3.21), we get

Bia® 4+ Bia® + .-+ Bia + B) = 7'(Qoa® + Qga® + - + Qra + Qq), (3.31)

where
By :=b'(s' + b'0),
Bi = —b*B(6s" + 5b'o),
BL = 4b* 5% (45" 4 3b'o) — 2\by'(Bo + s0),
Bg = b?B2b'[(1 — 16b%)Bo — so] + 2(1 — 12b%)b* 325
+ 13X\0? By (s + Bo),
B = b?B3b'[(12b% — 5) + 650] + 4b*(5b* — 3) 35
— A1 32y%(3980 + 42s0),
Bl =202 [(5 — 2b%)Bo — Tso] — BA? B3y (so + Bo)
+ 462 3% (7 — 2b%) + 2X\b* B3y (2980 + 35s0),
Bi = \b? By [4(T — 15b%)s0 + Bo (25 — 46b%))
+ B5%so(1 4 16b* — 108b%0) + (1 — 32b%) %5,
Bh = 2\b? %y [(8b* — 23) 3o + (12b* — 29)s0]
+ 26%% 202 Bo + (3 — 2b%)s0] + 2(8b% — 3)37s",
Bl = 14?35 (380 + 4s0) + 1287(Bs" — bisy),
Bl := —8\b*B7y (280 + 3s) — 8% (Bs” — b'so),
and
Qo :=20°, Qs := —100°8,
Q7 = 241°8%, Qo := —4b"%(86° — 1),
Qs = 4b*B* (6> — 5), Qa = —8b'8°(V* —5),
Qs := —20°B°(200% — 1), Qo := —202B7(8b* — 5),
Q1 = 166743, Qo := —8b*5°.

Replacing y* by —y* into (3.31) yields

Bia® — Bia® + -+ Bja — Bl = n'(Qoa® — Qsa® + -+ + Q1 — Q). (3.32)
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By adding (3.31) and (3.32), we have
Bia® + Bia® + Bia* 4+ B3a® + Bl =
7' (Qoa® + Q7a’ + Qs0* + Q3a” + Q). (3.33)
From (3.33) one can see that
B —n'Q1 = B°[TAV?Y (8s0 + 680) + 128(Bs" — b’so) — 16b°Bn’],

that has the factor o, i.e. there exist scalar functions w’ := w'(z) on M such
that

TAV?y (850 + 660) + 12B(Bs" — b'sg) — 16b*3%n" = a2, (3.34)
where i € {1,2,...,n}. Multiplying (3.34) by b; and y; leads to
BITAV? (8sg + 630) — 12b%s¢ — 16b?Bn'b;] = W', (3.35)
and
@?[TAV? (859 + 630) — w'y;] = 160520 y;, (3.36)
respectively. From (3.35), we deduce
w'b; =0, (3.37)
TAb?(8s0 + 680) — 12b%sg — 1602 Bn'b; = 0, (3.38)
and from (3.36), we have
TAb? (850 + 680) — w'y; = 0. (3.39)
From (3.39), we obtain
n; =0, (3.40)
TAb?(8s; + 6b;0) = w;, (3.41)

where
n; ‘= njaji, W; ‘= wjaji.
Multiplying (3.41) by b and using (3.37), we find

o =0. (3.42)
Thus
roo = 0, (3.43)
also from (3.40) we conclude that
Hiy=0.

Substituting (3.40) and (3.42) into (3.38), we obtain
(14X — 12)b*Bsy = 0.
Since 14\ — 12 # 0, thus sop = 0, and then from (3.30), we have
si; = 0. (3.44)
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From (3.43) and (3.44), we have that /3 is parallel with respect to a. Thus the
proof is complete. O

3.3. Proof of Theorem 1.5. Suppose that F is locally dually flat. From (2.9)
we have

A8 + Bio® + Cia* + Do + Ejo® + Mja+ N, = 0, (3.45)
where
A= Babg?;” + 60, Gy + B(ri0 — 3s10) + 3rooby,
B := —22 (% Gm — 168b,,G™b; — 8B7r00b; — 232 (110 — 3s10),
Cp = 2528 G — 8Bym G by + 16526, Gy — 88b, Gy
+ 45(2551 —y)roo + 6a, G B2,
D, =283 aym Ga' | 2082y, G™b; + 2082by Gy — 633 Ay G™
+ 103 To0YL,

Ep := —163%ymGL'b + 88%ym G yr — 163°bm Gy — 88 ooy,
M, == —20y,,G7 B3y,
N, = 16y, G By

From (3.45) and by noticing that the sum of odd powers and even powers of «
are zero respectively, we have

Ala6 + Cla4 + Ela2 + N; =0, (3.46)
Bja* + Do + M; = 0. (3.47)

Contracting (3.46) and (3.47) with b, we get

Aa® 4+ Ca' + Ea®> + N =0, (3.48)
Ba* + Do® + M =0. (3.49)
where
.
A= 53 5 Cf“ b 4 6626, G + B(ro — 350) + 30700,
= —242 Obm yGC' bt — 166b%D,,G™ — 88b*ro0 — 26% (10 — 3s0),
—op?Pmia ay’”Ga b — 8V By G — 166252 G by, — 262b, G

+4 (2b2 - 1)ﬁ27”00,
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—op T Cay L 908212y, G 4 148%5,,G + 108700,
E:= —16b253ymc;;7 + 8%y, G™ — 1630, G™ — 851700,
M = _2054ymG$7
N := 163%y,,G™.
From (3.48)x5+4(3.49) x4/ we have

[55 o Ga b+ 3062b, G™ + 15b%rg0 + 58(r — 330)} [1052 8‘7”” a
Bab Ga 1 2 m 2\ 22 m
+88 B+ 40862y, G™ + 2(5 — 86%) 820, G™ + 4(5 — 2b%) 82700
3—!

Gm

+ 883 (ro — 330)] o+ 85483’;;7%1 + 4083y, G™ — 243%b,,G™ = 0. (3.50)

Rewriting (3.48) and (3.50) yields that
0b,, G
6
Ba Byl
+ [2(1 - 8b2)ﬂ2meg” + 86282y, G™ + A(1 — 2b2)52r00} o

DmZay _ 25% 48?”" 24 = = [B(ro — 350) + 36 (00 + 2ym Gl o

+ [854r00 8% (262 — 1)y, G + 1654%03} a2 — 168%,,G™, (3.51)
and

8a25 [ 852} b Ga

Crclap —24%[5a? —4p?| Hr e ‘93”” St = —[58(ro - 3s0)
+ 156% (roo + 2megl)} at+ [40b25ymG;" + 2(5 — 86%)8%b,,G™
+4(5 — 2b%)B%rg0 + 883 (ro — 350)} o? — 4063y, G™ 4 2453%b,,G™.  (3.52)

From (3.r ) (5a? — 832) — (3.52) x a*, we have

ﬁ2 4 G m

ayl Yma 41 3p Gm] [ﬁ2 2(1 + 8b%) — 854]

x (a2roo + 2026, G™ — 2ﬁymGZ’>. (3.53)

From (3.53), one can see that 32a?(1 + 8b%) — b?a* — 8% can not be divided
by a*, thus a?rog + 2a2b,,G™ — 28b,,G™ is divided by a?, i.e. there exists a
scalar function 7 := n(x) on M such that

a’rop + 2026, G — 2By, G™ = a'n. (3.54)

On the other hand from (3.48), we have that rog + 2b,, G2 is divided by 5 and
therefore from (3.54) we have that n = 0. Thus

OymG3'

o bl — 3p,,G™, 3.55

o ; (3.55)

a?rop + 2020, G = 2By, GT. (3.56)
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From (3.56) we conclude that
ym G = a0, (3.57)

where 6 = 0;(z)y* is a one form on M.
Substituting (3.57) in (3.55), yields

m o __ 1 A 2ppl
by G = g(259 a0, ) (3.58)
From (3.56) and (3.58), we have

_ 2 2 1
roo = (59 a20,b ) (3.59)

From (3.59) one can see that

ro = 2 {00+ 56— 2081}, (3.60)
By substituting (3.57)-(3.60) in (3.46) and (3.47), we have
680, G™ = b0 + o*B0; + 3a* sy + 4580y, (3.61)
and

680, Gl = 20&21)19 + 6042810 + 4580y, (3.62)

respectively.
From (3.62) — (3.61), we deduce

1
810 i= g{ﬁel - 0bl}. (3.63)
From (3.61), (3.62), and (3.63), we conclude
am G = 1{04291 + 29yl}
m o 3 5

thus
m 1 2gm l
Gm = g{a 0" + 20y }

therefore sufficient conditions are proved. The converse can be proved by a
direct calculation. (]

Acknowledgment: The authors are grateful to the reviewer for his/her valu-
able comments.
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