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Abstract. One of the Helmholtz conditions for the inverse problem of a La-
grangian Mechanics is the metric compatibility of a semispray and the associ-
ated nonlinear connection with a generalized Lagrange metric. In this paper,
with respect to the supermetric induced by the Hessian of the Lagrangian, we
find a family of nonlinear connections compatible with supermetric. In a par-
ticular case, when a Lagrangian superfunction is regular, we have a solution for
the Euler-Lagrange superequation which defines a metric nonlinear connection.

Keywords: Horizontal endomorphism, Finsler supermanifolds, Canonical non-
linear connection, Supermetric.

1. Introduction

One of the Helmholtz condition for the inverse problem of a Lagrangian Me-
chanics is the metric compatibility of a semispray and the associated nonlinear
connection with a generalized Lagrange metric. The inverse problem is the
search for a non-singular, symmetric, type (0,2) tensor field g such that

Vg =0,

where V is the dynamical covariant derivative associated with a given semis-
pray S (see [9], [20]). Also, for a given semispray and a generalized Lagrange
metric, another approach to the Helmholtz condition is the search for a nonlin-
ear connection which is compatible with the metric tensor (see [5]). A similar
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programme can be carried out in the setting of supermechanics. Such a ge-
ometrical foundation has been established and in this geometrical setting the
inverse problem of Lagrangian supermechanics acquires a structure similar to
the inverse problem in ordinary Lagrangian mechanics [13, 14].

An interesting question is to discuss the generalization of Helmholtz condi-
tions in the setting of supermechanics. The Helmholtz conditions, in this case,
are the conditions that must be satisfied by a nonlinear connection N (z,y;n, )
in order that the generalized Lagrange supermetric (gqp(z,y;n,0)) satisfies
(3.1)-(3.4). In the first place, this will require introducing the superfunctions
Jjab Obtained by g-compatibility conditions, bringing them into a distinguished
form into the process of defining a nonlinear connection. It also have another
term derived from the differentiating of the coefficients of a given superspray.
In a particular case, when a Lagrangian superfunction is regular, we have a so-
lution for the Euler-Lagrange superequation which is called the Euler-Lagrange
supervector field. The nonlinear connection associated with this supervector
field is a solution for the above inverse problem. We should mention that,
in this case the Lagrangian superfunction must be an odd superfunction. We
could not find out the complete solution of the problem.

The paper is divided into two sections. In the first one we review the defini-
tion of a nonlinear connection, a superspray, the Euler-Lagrange superequation
and the Barthel endomorphism, which is constructed by using the solution of
the Euler-Lagrange superequation. Basic information about a nonlinear con-
nection on a supermanifold has been studied by Bejancu [4] and Vacaru [21].

In the second section we try to answer the inverse problem. In this section
an important concept is the dynamical superderivative with respect to a given
spray S with the coefficients G, G®. If we consider a dynamical superderivative
associated with S such that its coefficients obtained directly from the differen-
tiation of G*, G, then we can not define a nonlinear connection to answer the
inverse problem. So we consider a special dynamical superderivative, denoted
by V, and introduce a nonlinear connection which has the property Vg = 0,
where ¢ is a given generalized supermetric.

2. The Barthel Endomorphism.

The concept of nonlinear connection (N-connection) was introduced in com-
ponent form in a number of works by Cartan [7] and Ehresmann [11]. But the
first global definition is due to Barthel [3] (for global definition of a nonlinear
connection, see [8], [15]). The geometry of N-connection in superspaces are
considered in details in [24], [21], [18] .

Let introduce the necessary definitions and denotations on vector superbun-
dle (see details in [1], [10], [24]). The basic structure for building up superman-
ifolds is the Grassmann algebra. For each positive integer L, By will denote
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the Grassmann algebra over the reals with generators 1, 81, ..., 8, and relations
1.6, =6;.1=8;, i=1,..,L,
BiBj = —B;.Bi, i,j=1,..,L.

By, is a graded algebra [7] which can be written as a direct sum
Br, = (Br)o + (Br)1,

where (Br,)o and (By,); are the even and odd parts of (By,) respectively. If the
elements A, A’ € B, are homogeneous, then

AA € (Br)jajyjar,  AA = (1)1 47 4,

where |A| denotes the parity (= 0, 1) of value A. Given the Grassmann alge-
bra By, the corresponding (m,n)—dimensional superspace is defined to be the
space

B?’n = (BL)O X ... X (BL)O X (BL)l X ... X (BL)I

m copies n copies

where m is said to be the even dimension and n the odd dimension of the

superspace.
Weuse”a” ,”b”,”c”,... as an index for our supertensors. Then the index ”a”
(‘and similarly for ”b”, ”¢”) isi=1,....m and « = 1, ...., n where dimM = (m, n).

For example, in index notation, we write g, instead of the coefficients of the
supertensor g defined in (2.6). If X is a homogeneous geometric object, then
| X| denotes the parity (= 0, 1) of values X. Also, we use another notation |a|
which defines as bellow:

la] =0, if a =i, where i = 1,...,m. and |a| =1, if a = @, where « = 1, ..., n.

Let us consider a vector superbundle £ = (E, 75, M) whose type fiber is F
and 71 : TE—TM is the superdifferential of the map 7. The kernel of this
vector superbundle morphism being a subbundle of (TE, g, E) is called the
vertical subbundle over £ and is denoted by VE = (VE, 1y, E). Its total space
is

Ve = UuEE Vu’

where V,, = kernT and ueé.
A nonlinear connection, N-connection [22, 23], in vector superbundle £ is a
splitting on the left of the exact sequence

0—VE s TE—TE |V E—O, (2.1)

i.e. a morphism of vector superbundles N : TE — V& such that Noi is the
identity on VE&.

The kernel of the morphism N is called the horizontal subbundle and is
denoted by (HE, 7y, E). From the exact sequence (2.1) it follows that N-
connection structure can be equivalently defined as a distribution T, F =
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H,E®V,E, wue€ FE on E defining a global decomposition, as a Whitney sum,
TE=HEBVE.
locally a nonlinear connection in £ is given by its coefficients

NI (z,y,1,0), N’ (x,y,1,0), Ni(z,y,,0), N5 (x,y,1,6).

K2

In the tangent superbundle a local basis adapted to the given nonlinear
connection NNV is introduced by
6 & 0 0
(6351" o’ Byt 00«

),

where 5 5 5 5
- N A Vi T
Sxt T Ot N; oy’ N 00 (22)
and 5 5 5
= —— (2.3)

ome 877 @ By « 968"
Let (x%;n®) be local coordinates on M and (%, *; 7%, %) the corresponding
local coordinates on T M. If
X=X 0 + X o« 9
&cl on®
is a supervector field on M, then the vertical lift X” and the complete lift X*¢
of X have the form (see [6])

0 7]

XV = X"~ —
oy 06>’

and

m ) 8 m aXZ n 8X’L 8
X¢ = X'— J . Y — .
; Oxt + Zy OxI +;9 onv | oyt

Jj=1
Z 7 i
am 967

2:: X“—Jr Zﬂ

+

Definition 2.1. A vertical endomorphism on the tangent superbundle TM is
a (super) tensor field
J: X(TM)— X(TM)
satisfies in ImJ = KerJ, J?=0.
If J is a vertical endomorphism, the vertical differentiation d; is the mapping
dj = [i],d] :iJOd—dO’iJ.
In particular, for any superfunction f on M, we have

dyf = i;df.
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Let (z%;17%) be local coordinates on M and (z%, y%;n®, 0%) the corresponding
local coordinates on T'M. The Liouville supervector field C on X(T'M) defined
by
0 7]

e 9 9.4
oy 7 200 (2:4)

C=y

Definition 2.2. A morphism h : X(TM) — X (TM) is said to be a horizontal
endomorphism on M if it satisfies the following conditions:

(i) h2 =h

(ii)Kerh = X?(TM).

Assume h is a horizontal endomorphism. The supervector 1-form, or simply
the vector 1-form, [k, C] is said to be the tension of h. The vector 2-form [J, h]
is said to be the torsion of h.

Let h be a horizontal endomorphism. If X”*(T M) := I'mh, then

X(TM) = X"MTM)D X (TM)

and X"(TM) is called the supermodule of horizontal supervector fields. v :=
(td — h) : X(TM) — X(TM), is the vertical projection on X*(T'M) along
XM(TM). Also, we have hoJ = 0 and Joh = J.

Definition 2.3. A supervector field S on TM is a super-semispray if

0 g0

IS =y oy’ Iz

(2.5)

When the coefficients G* and G of a super-semispray S are homogeneous
of degree 2, we say that S is a superspray.

If S is a super-semispray, then for any supervector field X on M, J[ X", S] =
X". Also for the Liouville supervector field C' and any superspray S, we have
[C,S]=S.

It is not difficult to show that if h is a horizontal endomorphism on M and
S’ an arbitrary super-semispray then S := hS’ is also a super-semispray on
M. Tt satisfies the relation h[C,S] = S. So S is called the super-semispray
associated with h.

As in general case, on any Finsler Supermanifold [2, 22], there exists a
superspray induced by a Finsler metric. So as in general case, we need to work
with Euler-Lagrange equation and show that every Euler-Lagrange supervector
field is a super-semispray.

The Lagrange spaces were introduced [16](see also [18]), in order to ge-
ometrize the concept of Lagrangian in mechanics.
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A generalized Lagrange superspace is a pair GL™" = (M, g(z,y,;n,0)),
where g(z,y;n,0) is a distinguished tensor field on TM° = TM — {0}, su-
persymmetric of super rank (m,n). A Lagrange superspace is defined as a
particular case of generalize Lagrange superspace when the distinguished ten-
sor field on M can be expressed as

1oL 1 2L 1 2L 1 9°L (2.6)
91 = 3 9yiay 9P T 20yi008 I T 290aayi’ 9P T 2990098

where L : TM +— By, is a superfunction called a Lagrangian on M (see [22]).
Locally, L is regular if and only if the matrix

g= [ 9ij  9ip }
9aj YGap
is invertible. For example, if L = F?, where F is a Finsler metric and will be
defined in the following definition, then L is a regular Lagrangian. In this case
L is a homogeneous superfunction of degree 2.
The superenergy E, is defined as the superfunction

E,=C(L)— L

where C is the Liouville superfield.

Definition 2.4. A supervector field X € X(T M) is called dynamical super-
symmetry for (M, L) if [S,X] =0.

To define a supermetric on a supermanifold, we consider the base manifold
M of a vector superbundle £ = (FE, g, M) to be a connected and paracompact
manifold.

Definition 2.5. ([23]) A metric structure on the total space E of a vector
superbundle £ is a supersymmetric, second order, covariant supertensor field
g which in every point u € & is given by nondegenerate supermatric gup =
(0, Op) ( with nonvanishing superdeterminant, detg # 0).

Definition 2.6. A function F' : TM — By, is called a Finsler metric (see
[22],[23]) if the following conditions are satisfied:

(1) The restriction of F to TM? = TM—{0} is of the class C™ and F is only
continuous on the image of the null cross—section in the tangent supermanifold
to M.

(2) F(x, \y;n, \0) = AF(x,y;n,0), where X\ is a real positive number.

(8) The restriction of F to the even subspace of TM° is a positive function.
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(4) If we put

1 9?F? 1 9%F? 1 9?F? 1 9%F?
9ij = ca 7 9B =57 777 90 = s mrs o YaB = = 5o (2.7)
2 OyioyI 2 0yt 008 2 000yI 2 002008
then
g= [ 9ij  9ip }
9aj YGap

s invertible .

A pair (M, F) is called a Finsler Supermanifold.
It is obvious that Finsler superspaces form a particular class of Lagrange
superspaces with Lagrangian L = F2.

Definition 2.7. Let L be a Lagrangian defined on TM. The dynamics of
a system (TM,w, L), associated with L is given by a supervector field X €
X(TM) satisfying the equation

ixw=—dL (2.8)
where w = dd L.
In local coordinates (z,y;n,6), the local form of w is
o?°L . . 0°L . . 2L .
= ———da? Adz —_dy’ Adxt — (—1)IH dn® A dz’
¥ 0x? Oy’ * T oyI dy* 4 = = (1) on*oy? 1 *
>°L ; oL . o*L
—(—1)!H 0% A dat — (—1)E == —dx? A dn® —_dy' A dn®
D™ Sgeay v = () G gga e N A+ e N
0%’L 0%L
_ 1)zl B a ()l B 1, 2.
+(-1) anﬁaead" Adn®+(=1) 6‘95800‘d9 Adn®} (2.9)

Theorem 2.1. ([19]) On any Finsler supermanifold (M, F'), there is a super-

spray
) 9 . 0 0
=y — 4+ 0°— —2G7 (x,y;1,0)=— — 2GP(z,y; 1, 0) —
S=v g+ g5 20 @yin )55 =26 yim,0) 545,
where - - )
1 OPF O2°F*  OF
G’ = 793 (yk kS,m aYgm T m)
4 oxkoy o>y or
1 . O%F? 9 F? OF?
I gmB (g = - 2.1
17" gom T apan® o (2:10)
and 2 12 2 172 2
1 F F F
8 = Lygmip PF2__ 0 o OF2,
4 Oxkoy™  Onedy™ ox™
1 . 92F? 0% F? OF?
—gP () — - . 2.11
19" W aae T apae® " ) (2.11)



On the compatibility of supermetrics with nonlinear connections 29

We call this superspray the canonical superspray of a Finsler metric.
Let S be the Euler-Lagrange supervector field, then the coordinate form of
(2.8) is

1 9?L 0?L oL

G — (=) g, G = Z (47 —(—1)El @ _
gz]G ( 1) gzaG 4 (y 61“76y1 ( 1) anaayl 9 aJCZ ) (212)
and
; 1, . 0°L 0?L oL
GF (=) B _ (i L _ 1)zl B_ 22N (91

where {¢ij, gia, 9ai, gsa } are introduced in (2.6).

We are now in position to generalize the Barthel endomorphism to the super-
symmetric case. To do it we need to define a supervector 1-form [J, X|, where
J is a vector 1-form and X a supervector field. The way to proceed is the
following. On an ordinary manifold M it is known that the Frolicher-Nijenhuis
bracket satisfies, for K =¢é® X, Z =n®Y,

[KvZ]FN:f/\n®[X7Y]+LK77®Y_(_1)TSLZ£®X5 (214)

where £ € Q" (M) and n € Q°(M) are differential forms and X,Y two vector
fields [17]. In this paper we use only vector 1-forms. So, substituting M for
M, it is not difficult to see that for vertical endomorphism

;0 0
=dr'® — +dn® Q@ —
J ' ® By +dn" ® 207
and any homogeneous supervector field X, (2.14) is replaced by
; 0
[‘LX] = dxl®[87yzvX}+dna®[7 X]

_ (_1)<TXS+|J|x\x|)(Ldei®%Jerdna@
Y

Notice that r = 1,s = 0 and J is a vector form of degree 0.
For each supervector field Y on T’M we have

565"

XY = (ORI (VX ve X )

(YO YR 5 ).

An easy computation shows that
[, XY = (-)XIVILY, X] = (-1)XIM [y, X],

so, we proved that:
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Lemma 2.2. If J is the vertical endomorphism and X,Y two homogeneous
supervector fields on T M, then we have

[, X]Y = (1) XI5y, X] — (—)XIV gy, X]. (2.15)

Theorem 2.3. (1) Any super-semispray S generates a horizontal endomor-
phism
1

h= §(zd + [, S)]), (2.16)
where id is the identity map on T(TM). The horizontal lift of a supervector
filed X on M is

1

5(X6+[XU,S]>. (2.17)
(2) A super-semispray associated with h is

X" i=hX°=

S = %(s+ C, 5)). (2.18)

If S is a superspray, then S, = S.
(8) The torsion of h vanishes.

Proof. (1) First, we show that h is a horizontal endomorphism. So let X be
a homogeneous supervector field on M. Since S is an even supervector field,
thus

. 1/ N R e R Te
nxn) = g(x *J{“axi*?ayi@”a*yiw?
ORI N I SR G
o Coec oy copv 008 TV \oui oy T ows o6e
oX' 9 0X° 9 1 9 B
_ B v A Y P v _ yi _oya_Y oy
A aeﬁ)) 5 oy X age) =

This shows that X?(T M) C kerh.
Now, let Y € kerh, then

0=2n(Y) =Y +[JY,8] — JY, 8],
S0
Y =-[JY,S]+ JY, S].
If we compute JY, it follows that
JY = —J|JY,S] = 0.
Thus kerh C XV(T'M) and therefore
XY (TM) = kerh.
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It is clear that for any supervector field XV € X (TM), we have h?(X") = 0.
On the other hand

R(XC) = (hXchh[JXC,S}fhoJ[XC,S])

1
2
_ %(hXC +h[X", 8]) = hX“.

This shows that on X (T M) we have h? = h.
(2) If S is an arbitrary super-semispray on M and h is the horizontal en-

domorphism defined by (2.16), then Joh(S) = C. So S, = h(S) is a super-

semispray.
Now let S has the local form
- .0 0 ~. 0 ~, 0
S=y'— 40— —2G"— — 2G“——.
Vior T apa oy 967

It is not difficult to show that J[S,S] = —S + S. If S is a superspray, i.e. G
and G* are homogeneous superfunctions of degree two, then [C,S] = S and

(3) We begin this part of proof with the definition of horizontal endomor-
phism h, thus we have

], h] = %[J, id] + %[J, 1, ST].

It is clear that [J, id] = 0, so we show that [J, [J, S]] = 0. Note that in this case
J is an even l-vector valued form and S an even supervector field. From the
Bianchi identities for the lie superalgebra of vector-valued forms, we have

(DML S+ (DML S, ]+ (=D)™HS. [, ] = 0.

Apply Lemma 3.5 to [S,J], we see that [S,J] = —[J,S]. Since [J,J] = 0,
therefore [J, [J, S]] = 0 and the torsion of h is zero. O

In local coordinates (x,y;n,0) in (T'M), we have

o, 0 ; 0 g 0 9
(Bxi)iaxi ¢t Oyd Ni 008 Sat
and
NI R R R N

on® *Oyd “908  n



32 Esmaeil Azizpour

3. Nonlinear connections obtained from metric compatibility.

The dynamical superderivative that corresponds to a super-semispray S and
a nonlinear connection N is defined by

Y xU(TM) = X (TM)

through
V(X? 0 +Xai) = (S(Xi)+Xj,4iNi+Xa,4i1\ﬂ)i
ay1 800‘ - VAN ] atVa 8’y2
«@ T A AT o £\TQ a
+  (S(X) + X AY NS +X5A5N5)—aea,

where A are the coefficients of an operator A such that for each (0,2)-tensor
field as the supermetric g, defined as

—gpe If b=1i and c=a«
Angc = { ¢
Goe else.

One can immediately check that
VX =8(/)X+ fVX.
Note that, since S is even supervector field therefore V is also even su-
perderivative. For the homogeneous supermetric tensor g, its dynamical deriv-
ative is given by

(Vg)(X,Y) = S5(9(X,Y)) = g(VX,Y) — g(X, VY).

In local coordinates,

g = S9i5) = Nigij — Ni'9aj — NJgie — Nj'gia = 0, (3.1)
Gia = —5(gia) + Gk NI + gaa N, — i NJ + 9isNE =0, (3.2)
Gai = —S(gai) = 9;iN2 + ggiNE + go; N} — gas NP =0, (3.3)
Jua = —S(Gua) + gtaN/i + gyalN, — 9t Na + 9, N3 = 0. (3.4)

Thus a nonlinear connection N is g-metric if Vg =0

Theorem 3.1. Let S be a super-semispray with local coefficients G* and G®.
There is a metric nonlinear connection N, whose coefficients Ng’ are given by
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(3.5 - 3.8 ).
_ t Rled
7 ik
N} = ég Irj) + 29 P9+ 5 R (3.5)
. i o i
i a “a
No = 29 gka\"" g “Gual T 5ga (3.6)
N&ed ? a a aGa
Ny = Lg™gn + fg "G + (3.7)
2 oy
_ 5 a
Ng = 59 gkﬁl + *g 98 + 908 (3.8)

where ti are the coefficients of an operator T and similar to the operator A, such
opemtor defined as t} gcq = gea €xcept for the casest)ggy = —9p~, tL9vi = —Gv;
and t JaB = —9Jag, also sy are the coefficients of an opemtor S and defined as

5¢9ca = Jea €xCEPt fOT 83,95y = =08, S0y = —Gvi @A S]Gaj = —Jaj-

Proof. In [12], it is shown that, by differentiating of the coefficients of each
super-semispray with respect to y% 6% we obtain four superfunctions which
are the coefficients of a nonlinear connection. On the other hand g“bgcd| are
components of a supertensor fields. Therefore all four superfunctions (3.8)
satisfy the transformation rules for a nonlinear connection and hence they define
a nonlinear connection.

We only show that (Vg)(z2, aeﬁ) = 0 and the rest of equalities will be as
the same method. So, if we apply the superfunctions (3.5 - 3.8 ) in gjop =

—5(gap) + 9isNL + g5 N — gMNB + gMNB, then we conclude that

L ik 1
9ip §tag Ilka | T 948 2a9 g|k =0,

1, . 1
—Gai <2tkg’kg|k5) + Gany (thg”kgw) =0.

Since
9ip (559™) + g8 (s1g™) = 04
and
g (s9™) + g (s397") = 3,
then

—S(gap) — (gif;sigi“ + gvgslgw) S(9ua)

N — N~

(*gmsggi’* + gays}gw) S(gp) = 0.
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Using the same method, we can omit the term —giBgTC’: by four sentences, i.e.

oG 1 it Y o YH k
~9i85ge — 5 (959" + 9185097 9urNg
1 o )
+t 3 (*gmsgg”“ + gms}gw) 98N}, = 0.
Continuity this way, we will obtain that (Vg)(&%, %) =0. O

Consider now a nonlinear connection N, we can introduce two new natural
local bases that are dual to each other. In a local coordinate system (x, y;n, )
in T M, we define

5y’ == dy' + Nida? — NLdn®, 60, :=—do" — Nda' — Ngdn®.  (3.9)

The tangent superbundle of the supermanifold 7'M has a local coordinate

basis that consists of the %, aiy,-, % and the aa%' Similarly, the cotangent
superbundle of the supermanifold 7'M has a local coordinate basis that consists
of the {dz?, dy*, dn®, 60, }.

In order to make explicit computations, we will need the following result.

Lemma 3.2. The local expression of the supersymplectic form w with respect
to the basis {dx®, oy, dn®, 60%} is

w = g;i0y’ Adz' + (=) gai00% A da® — (—1)Flgady® A dn® + 95a060° A dn®

1 C «
+35 (_gkiN]]‘C + gk N+ (=) gai N

2
O*L L S
(=)l N = 7= J i
(D)9 NP + 5550 Mayj)dx A dx
0L 2L ,
iNL 4 (D) HggNE — (—)F——— 4 (-1)H =55 ) dn® A da’
0’L 9L

5?) dz’ A dn®

_NEly. NI B _ (_1)IL] _ 1)Ll
(0 Plgga¥? o gaVF = (1) T+ () T,
1

0?L %L

~(Gna0e T aeoee

)> dn® A dn®.

Proof. Tt is sufficient to replace the factors dy’ and df® by dy* and 0% in the
supersymplectic form (2.9). O

Theorem 3.3. Let L be a regular Lagrangian. Suppose that S is the Fuler-
Lagrange supervector field associated to L and for all X, Y € X(T' M) we have
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w(hX,hY) =0. Then S and g satisfy Vg = 0, where g is the metric associated
to L.

Proof. Let the condition w(hX,hY) = 0, of theorem be satisfied. Then we have

8%L 9L
T 0z + Oxidys’ (3.10)
) 0%L 0L
NI 4 (=Dl NP = (—)IE () IE 2 9(3.11
g]l a+( ) gB’L « ( ) 37]0‘3y’ ( ) axjaeaéﬂ(?) )
. 0L 0?L

—1)IElg. N7 JNP = (m)H ()l §1.(3.12
( ) gJ 1 +gﬁ 1 ( ) azlaaa ( ) anaayz j7(3 )

*(*1)‘L|(gmNZ} + gzﬂN(i) + (g'yozNg + g'yBN(z)
0?L 0?L
( BHH + aHRbs )’
onPoo on®o0
where N is the nonlinear connection induced by S. By differentiating of the
equations (2.12) and (2.13) with respect to y and 6, we have four relations

1 < 0?L 0?L

(3.13)

; 1
9iiN{ — (—D)lgu N = =S(gir) +

- — — . .14
2 4 \ 0zI 9yt 8yk8x’>’ (3.14)

) 1 0%L 0*L
o NE4+ (=D g NP = 28(gja) + = [ —=— : 1
GiaNj + (1) ggaN; 55(g50) + 5 ayion + 9zigea ,(3.15)
J |L| o (_1)‘L‘
9;ilNg + (=1)""gaiNg = 5 S(gpi)
1 0%L 0%L
— [ —(=1)*l _ : 3.16
Ty ( (=1) 00301° 87}0‘87;1) - (316)
, 1 1 0%L 8L
N (1) so_ 1 : _

We should mention that in computing the above equations, for example the
equation (3.17), it is necessary to use

agai _ ag'ya agﬁa ag'ya

907 ~ oy 000 008
then after replacing the value of the super-semispray S, the equation will be
obtained. On the other hand if we do the relations (3.16)-(3.11), we get

205N+ 2(=1)FlggNF — g;iNI — (—1)/Hgg; N5 (3.18)
1 O%L O%L
— (_)lEl ) 2 (1)Ll _
O%L 0%L
_ _N\L 2= _1)\ILI a
D Gy T Y Gaigge % (3:20)



36 Esmaeil Azizpour

Last four terms of the previous equation together are zero, therefore, if the
Lagrangian superfunction L is odd, so

Jlai = 0.
Also, minus of (3.17) and (3.13) gives us

Jlya =0
and minus of (3.14) and (3.10) gives us

9ik = 0.
This completes the proof. (Il
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