
Journal of Finsler Geometry and its Applications

Vol. 4, No. 1 (2023), pp 114-123

DOI: 10.22098/jfga.2023.13112.1092

New Special Finsler Spaces

Nabil L. Youssef a and A. Soleiman b,c ∗

a Department of Mathematics, Faculty of Science, Cairo University,

Giza, Egypt
b Department of Mathematics, College of Science and Arts - Qurayyat, Al

Jouf University, Skaka, Kingdom of Saudia Arabia
c Department of Mathematics, Faculty of Science, Benha University,

Benha, Egypt

E-mail: nlyoussef@sci.cu.edu.eg, nlyoussef2003@yahoo.fr

E-mail: amr.hassan@fsci.bu.edu.eg, amrsoleiman@yahoo.com

Abstract. The pullback approach to global Finsler geometry is adopted. Some

new types of special Finsler spaces are introduced and investigated, namely,

Ricci, generalized Ricci, projectively recurrent and m-projectively recurrent

Finsler spaces. The properties of these special Finsler spaces are studied and

the relations between them are singled out.
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1. Introduction

Many types of recurrence in Riemannian geometry have been studied by

many authors [3, 4, 7, 8, 9, 10, 11, 12]. On the other hand, some types of

recurrence in Finsler geometry have been also studied [5, 6, 13, 14].

In a recent paper [14], we have introduced and investigated intrinsically three

classes of recurrence in Finsler geometry: simple recurrence, Ricci recurrence

and concircular recurrence. Each of these classes consists of four types of

recurrence. We also investigated the interrelationships between the different

types of recurrence.
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The present paper is a continuation of [14], where we introduce and in-

vestigate some new types of special Finsler spaces, namely, Ricci, generalized

Ricci, projectively recurrent and m-projectively recurrent Finsler spaces. Some

Finsler tensors are defined and their properties are studied. These tensors are

used to define the projectively recurrent and m-projectively recurrent Finsler

spaces. The relations between the above mentioned spaces are investigated.

2. Notation and Preliminaries

In this section, we give a brief account of the basic concepts of the pullback

approach to intrinsic Finsler geometry necessary for this work. For more details,

we refer to [1, 15, 16, 17, 18, 20]. We shall use the notations of [15].

In what follows, we denote by π : TM −→ M the tangent bundle to M ,

F(TM) the algebra of C∞ functions on TM , X(π(M)) the F(TM)-module

of differentiable sections of the pullback bundle π−1(TM). The elements of

X(π(M)) will be called π-vector fields and will be denoted by barred letters X.

The tensor fields on π−1(TM) will be called π-tensor fields. The fundamental

π-vector field is the π-vector field η defined by η(u) = (u, u) for all u in the slit

tangent bundle T M := TM/ {0}
We have the following short exact sequence of vector bundles [2]

0 −→ π−1(TM)
γ−→ TTM

ρ−→ π−1(TM) −→ 0,

with the well known definitions of the bundle morphisms ρ and γ. The vector

space Vu(TM) = {X ∈ Tu(TM) : dπ(X) = 0} is the vertical space to M at u.

Let D be a linear connection on the pullback bundle π−1(TM). The vector

space Hu(TM) = {X ∈ Tu(TM) : DXη = 0} is called the horizontal space to

M at u . The connection D is said to be regular if

Tu(TM) = Vu(TM)⊕Hu(TM) ∀u ∈ TM.

If M is endowed with a regular connection, then the vector bundle maps

ρ|H(TM) andK|V (TM) are isomorphisms. In this case, the map β := (ρ|H(TM))
−1

is called the horizontal map of D.

The horizontal ((h)h-) and mixed ((h)hv-) torsion tensors of D, denoted by

Q and T respectively, are defined by

Q(X,Y ) = T(βX, βY ), T (X,Y ) = T(γX, βY ) ∀X,Y ∈ X(π(M)),

where T is the (classical) torsion tensor field associated with D.

The horizontal (h-), mixed (hv-) and vertical (v-) curvature tensors of D,

denoted by R, P and S respectively, are defined by

R(X,Y )Z = K(βX, βY )Z,

P (X,Y )Z = K(βX, γY )Z,

S(X,Y )Z = K(γX, γY )Z,

where K is the (classical) curvature tensor field associated with D.
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The contracted curvature tensors of D, denoted by R̂, P̂ and Ŝ (known also

as the (v)h-, (v)hv- and (v)v-torsion tensors respectively), are defined by

R̂(X,Y ) = R(X,Y )η,

P̂ (X,Y ) = P (X,Y )η,

Ŝ(X,Y ) = S(X,Y )η.

Theorem 2.1. [18] Let (M,L) be a Finsler manifold and g the Finsler metric

defined by L. There exists a unique regular connection ∇ on π−1(TM), called

Cartan connection, such that
(a): ∇ is metric : ∇g = 0,

(b): The (h)h-torsion of ∇ vanishes : Q = 0,

(c): The (h)hv-torsion T of ∇ satisfies : g(T (X,Y ), Z) = g(T (X,Z), Y ).

3. Ricci (generalized Ricci) Finsler spece

In this section, we introduce and study some new special Finsler spaces,

called Ricci and generalized Ricci Finsler spaces. Some classes of generalized

Ricci Finsler spaces are distinguished. These new spaces have been defined

in Riemannian geometry [3, 4, 7, 8, 9, 10, 11, 12]. We extend them to the

Finslerian case. The only linear connection we deal with in the sequel is the

Cartan connection ∇.

For an n-dimensional Finsler manifold (M,L), we set the following notations:

h

∇ : the h-covariant derivatives associated with Cartan connection,

Ric : the horizontal Ricci tensor of Cartan connection,

Rico : the horizontal Ricci tensor of of type (1,1) defined by

g(RicoX,Y ) = Ric(X,Y ),

r : the horizontal scalar curvature of Cartan connection,

C := R− r

n(n− 1)
G : the concircular curvature tensor;

G(X,Y )Z := g(X,Z)Y − g(Y , Z)X.

Definition 3.1. A Finsler manifold is said to be horizontally integrable if its

horizonal distribution is completely integrable or, equivalently, if R̂ = 0.

Definition 3.2. Let (M,L) be a Finsler manifold of dimension n ≥ 3 with

non-zero Ricci tensor Ric. Then, (M,L) is said to be:

(a): Ricci Finsler manifold if Ric2o := Rico ◦ Rico = r
n−1 Rico,

(b): generalized Ricci Finsler manifold if Ric2o = αRico,

where α is a non-zero scalar function on TM called the associated scalar.

The following result gives some important properties of generalized Ricci

Finsler manifolds.
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Theorem 3.3. Let (M,L) be a generalized Ricci Finsler manifold of dimension

n ≥ 3 with associated scalar α. The following assertions hold:

(a): If the Ricci tensor is symmetric, then the scalar curvature r can not

vanish.

(b): The Ricci tensor in the direction Rico(W ); W being a non zero π-

vector field, is the associated scalar α.

(c): The tensor Rico has two eigenvalues 0 and α.

(d): If (M,L) is horizontally integrable Ricci recurrent, then the associ-

ated scalar α = r
2 .

Proof.

(a) Let (M,L) be a generalized Ricci Finsler manifold with associated scalar

α and g the associated Finsler metric. Then, by Definition 3.2

Ric(RicoX,Y ) = αRic(X,Y ). (3.1)

Setting X = Y = Ei, where {Ei; i = 1, ..., n} is an orthonormal basis. Hence,∑
i

Ric(RicoEi, Ei) = αr.

We show that r ̸= 0. Assuming the contrary, then∑
i

Ric(RicoEi, Ei) = 0.

As the Ricci tensor Ric is symmetric (since (M,L) is horizontally integrable

[14]) and g is positive definite, the above relation yields Rico = 0, which is a

contradiction.

(b) Setting X = W ̸= 0 and Y = RicoW in (3.1), we get

α =
Ric(RicoW,RicoW )

g(RicoW,RicoW )
,

which means that α is the Ricci tensor in the direction Rico(W ).

(c) Let V be an eigenvector associated with the eigenvalue λ of Rico, then

RicoV = λV .

From which, noting that (M,L) is generalized Ricci with associated scalar α,

we have

(λ2 − αλ)V = 0.

Consequently, λ = 0 or λ = α.

(d) As (M,L) is Ricci recurrent with scalar form A, then

(∇βXRic)(Y , Z) = A(X)Ric(Y , Z) (3.2)
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and since (M,L) is horizontally integrable, then, we have [14]

SX,Y ,Z {(∇βXR)(Y , Z,W )} = 0. (3.3)

Contracting (3.2) with respect to Y and Z, we get

(
h

∇ r)(X) = rA(X). (3.4)

From which,

(
h

∇ r)(RicoX) = rA(RicoX). (3.5)

On the hand, contracting (3.2) with respect to X and Y and using (3.3), we

obtain
1

2
(
h

∇ r)(Z) = A(RicoZ). (3.6)

Setting Z = RicoX, noting that (M,L) is generalized Ricci with associated

scalar α, (3.6) becomes

1

2
(
h

∇ r)(RicoX) = αA(RicoX) (3.7)

Now, (3.5) and (3.7) imply that

(r − 2α)A(RicoX) = 0 (3.8)

We finally show that A(RicoX) ̸= 0. Assume the contrary: A(RicoX) = 0.

From which, taking into account (3.4) and (3.6), we get rA = 0. Hence, r = 0

or A = 0. Both yield a contradiction. Then, (3.8) implies that α = r
2 . □

Theorem 3.4. Let (M,L) be a horizontally integrable Ricci recurrent gener-

alized Ricci Finsler manifold of dimension n ≥ 3 with associated scalar α. If

(M,L) is Ricci Finsler, then it is three dimensional.

Proof. As (M,L) is horizontally integrable Ricci recurrent generalized Ricci

with associated scalar α. Then, from Theorem 3.3(d), we have

α =
r

2
. (3.9)

On the other hand, if (M,L) is Ricci Finsler, then the associated scalar α has

the form

α =
r

n− 1
(3.10)

As (M,L) is horizontally integrable, the Ricci tensor is symmetric. Conse-

quently, by Theorem 3.3(a), the proof follows immediately from (3.9) and

(3.10). □

Theorem 3.5. Every Finsler manifold of dimension n ≥ 3 satisfying Ric = r
n g

is a generalized Ricci Finsler manifold with associated scalar α = r
n .

Proof. The proof is clear and we omit it. □

SX,Y ,Z denotes cyclic sum over X,Y , Z.
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Definition 3.6. Let (M,L) be a Finsler manifold of dimension n ≥ 3 with

non-zero h-curvature tensor R. We will say that (M,L) is a semi-isotropic

Finsler manifold if the h-curvature R has the form:

R(X,Y , Z,W ) = A(X,Z)A(Y ,W )−A(X,W )A(Y , Z),

where A is a non-zero symmetric tensor of type (0,2), called the associated

tensor.

Theorem 3.7. Every horizontally integrable semi-isotropic Finsler manifold,

with associated tensor as the Ricci tensor, is generalized Ricci with associated

scalar α = r − 1.

Proof. As the Ricci tensor of a horizontally integrable Finsler manifold is sym-

metric [14], then, we have

R(X,Y , Z,W ) = Ric(X,Z)Ric(Y ,W )− Ric(X,W )Ric(Y , Z).

Contracting both sides of the above equation with respect to Y and W , we

obtain

Ric(X,Z) = rRic(X,Z)− g(RicoX,RicoZ).

From which, noting that the Ricci tensor Ric is symmetric

Ric(RicoX,Z) = (r − 1)Ric(X,Z).

Hence, (M,L) is generalized Ricci with associated scalar α = r − 1. □

Remark 3.8. Theorem 3.5 and Theorem 3.7 give two classes of generalized

Ricci Finsler manifolds.

4. Projective (m-projective) recurrence

In this section, we investigate some new types of recurrent Finsler spaces,

namely the projectively recurrent and m-projectively recurrent Finsler spaces.

Some Finsler tensors are defined and their properties are studied. These tensors

are used to define the projectively (m-projectively) recurrent Finsler space.

For a Finsler manifold of dimension n ≥ 3 with non-zero Ricci tensor Ric.

we define the following tensors:

P(X,Y )Z := R(X,Y )Z − 1

(n− 1)
{Ric(X,Z)Y − Ric(Y , Z)X}, (4.1)

H(X,Y )Z := R(X,Y )Z − 1

2(n− 1)
{Ric(X,Z)Y − Ric(Y ,Z)X

+g(X,Z)RicoY − g(Y , Z)RicoX}. (4.2)

The tensor P (resp. H) is called the projective (resp. m-projective) curvature

tensor.

Definition 4.1. Let (M,L) be a Finsler manifold of dimension n ≥ 3 with

non-zero Ricci tensor. Then, (M,L) is said to be:
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(a): projectively recurrent if
h

∇ P = A⊗ P,

(b): m-projectively recurrent if
h

∇ H = A⊗H,

where A is a non-zero π-form on TM called the associated form.

In particular, if
h

∇ P = 0 (resp.
h

∇ H = 0) , then (M,L) is called projectively

(resp. m-projectively) symmetric.

The following result gives some properties for the m-projective curvature

tensor.

Proposition 4.2. Let (M,L) be a Finsler manifold of dimension n ≥ 3 with

non-zero Ricci tensor. Then, the m-projective curvature tensor H has the fol-

lowing properties :
(a): H(X,Y , Z,W ) = −H(Y ,X,Z,W ),

(b): H(X,Y , Z,W ) = −H(X,Y ,W,Z),

(c):

SX,Y ,Z {H(X,Y )Z} = SX,Y ,Z

{
T (R̂(X,Y ), Z)− 1

2(n− 1)
[Ric(X,Z)Y

−Ric(Y , Z)X + g(X,Z)RicoY − g(Y , Z)RicoX]
}
,

(d):

SX,Y ,Z

{
(∇βXH)(Y ,Z,W )

}
= −SX,Y ,Z

{
P (X, R̂(Y , Z))W

+
1

2(n− 1)
[(∇βXRic)(Y ,W )Z − (∇βXRic)(Z,W )Y

+g(Y ,W )(∇βXRico)(Z)− g(Z,W )(∇βXRico)(Y )]
}
,

(e): (∇γηH)(X,Y , Z) = 0,

(f):

H(X,Y )ζ =
1

2(n− 1)

{
g(Y , ζ)RicoX − g(X, ζ)RicoY

}
,

where ζ is a concurrent π-vector field [19].

Proof. The proof follows from Theorem 3.6 of [20] and Proposition 2.4 of [19]

together with the definition of m-projective curvature tensor. □

Theorem 4.3. For a Finsler manifold with non-zero Ricci tensor Ric satisfying

Ric = r
n g, the three notions of being concircularly recurrent, projectively recur-

rent and m-projectively recurrent are equivalent.

Proof. The proof follows from the fact that the concircular curvature tensor

C, the projective curvature tensor P and the m-projective curvature tensor H
coincide under the given assumption Ric = r/n g. □
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We know that every recurrent Finsler manifold is Ricci recurrent (Theorem

3.2(a) of [14]). The converse of this theorem is not true. For the converse to

be true we need an additional assumption as shown in the next result.

Theorem 4.4. A Ricci recurrent m-projectively recurrent Finsler manifold

with the same recurrence form is recurrent.

Proof. As (M,L) is Ricci recurrent with recurrence form A, then, we have [14]

(∇βWRic)(X,Y ) = A(W )Ric(X,Y ). (4.3)

Applying the h-covariant derivative on both sides of (4.2), noting that ∇g = 0,

we get

(∇βWH)(X,Y , Z) = (∇βWR)(X,Y , Z)− 1

2(n− 1)

{
(∇βWRic)(X,Z)Y

−(∇βWRic)(Y , Z)X + g(X,Z)(∇βWRico)(Y )

−g(Y , Z)(∇βWRico)(X)
}
,

In view of (4.3), this equation becomes

(∇βWH)(X,Y , Z) = (∇βWR)(X,Y , Z)− A(W )

2(n− 1)

{
Ric(X,Z)Y

−Ric(Y , Z)X + g(X,Z)RicoY − g(Y , Z)RicoX
}
.(4.4)

Now, let (M,L) be an m-projectively recurrent manifold with the same

recurrence form A. Then, from Definition 4.1 and (4.4), we obtain

(∇βWR)(X,Y , Z) = A(W )R(X,Y )Z.

Hence, (M,L) is recurrent with the same recurrence form A. □

Theorem 4.5. Each recurrent Finsler manifold is m-projectively recurrent.

Proof. Since (M,L) is recurrent with recurrence form A, then (M,L) is Ricci

recurrent with the same recirrence form A. Using Definition 2.1(a) of [14],

taking into account (4.4) and (4.2), we conclude that

(∇βWH)(X,Y , Z) = A(W )H(X,Y )Z.

Hence, (M,L) is m-projectively recurrent with the same recurrence form A. □

Theorem 4.6. Let (M,L) be a Ricci recurrent Finsler manifold. Then, (M,L)

is m-projectively recurrent if and only if it is projectively recurrent with the same

recurrence form.

Proof. From (4.1) and (4.2), we have

H(X,Y )Z := P(X,Y )Z +
1

2(n− 1)

{
Ric(X,Z)Y − Ric(Y , Z)X

+g(Y , Z)RicoX − g(X,Z)RicoY
}
, (4.5)
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From which, taking the h-covariant derivative of both sides, we obtain

(∇βWH)(X,Y , Z) = (∇βWP)(X,Y , Z) +
1

2(n− 1)

{
(∇βWRic)(X,Z)Y

−(∇βWRic)(Y , Z)X + g(Y , Z)(∇βWRico)(X)

−g(X,Z)(∇βWRico)(Y )
}
,

Since, (M,L) is Ricci recurrent with recurrence form A, then by (4.3), the

above equation takes the form

(∇βWH)(X,Y , Z) = (∇βWP)(X,Y , Z) +
A(W )

2(n− 1)

{
Ric(X,Z)Y

−Ric(Y , Z)X + g(Y ,Z)RicoX − g(X,Z)RicoY
}
, (4.6)

Now, let (M,L) be m-projectively recurrent with the same recurrence form

A. Then, from Definition 4.1, taking into account (4.5), the above equation

reduces to

(∇βWP)(X,Y , Z) = A(W )P(X,Y )Z.

Hence, (M,L) is projectively recurrent with the same recurrence form A.

Conversely, let (M,L) be projectively recurrent with the same recurrence

form A. Then, from Definition 4.1, taking into account (4.6) and (4.5), we

conclude that (M,L) is m-projectively recurrent with the same recurrence form

A. □

Acknowledgment: The authors dedicated this article to the memory of

Waleed A. Elsayed.

References

1. H. Akbar-Zadeh, Initiation to global Finsler geometry, Elsevier, 2006.

2. J. Grifone, Structure présque-tangente et connexions, I, Ann. Inst. Fourier, Grenoble,

22, 1 (1972), 287-334.

3. U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor,

N. S., 56 (1995), 312-317.

4. Y. B. Maralabhavi and M. Rathnamma, On generalized recurrent manifold, Indian J.

Pure Appl. Math., 30 (1999), 1167-1171.

5. M. Matsumoto, On h-isotropic and Ch-recurrent Finsler spaces, J. Math. Kyoto Univ.,

11 (1971), 1-9.

6. R. S. Mishra and H. D. Pande, Recurrent Finsler spaces, J. Ind. Math. Soc., 32 (1968),

17-22.

7. R. H. Ojha, m-projectvely flat Saskian manifold, Indian J. Pure Appl. Math., 4 (1985),

481- 484.

8. E. M. Patterson, Some theorems on Ricci recurrent spaces, J. London Math. Soc., 27

(1952), 287-295.

9. S. K. Saha, On Type of Riemannian manifold, Bull. Cal. Math. Soc., 101 (2009), 553-558

10. J. P. Singh, On an Einstein m-projectve P-Sasakian amnifolds, Bull. Cal. Math. Soc.,

101 (2009), 175-180.



New Special Finsler Spaces 123

11. H. Singh and Q. Khan, On generalized recurrent Riemannian manifolds, Publ. Math.

Debrecen, 56 (2000), 87-95.

12. A. G. Walker, On Ruses’s spaces of recurrent curvature, Proc. London Math. Soc., 52

(1950), 36-64.

13. Nabil L. Youssef and A. Soleiman, On concircularly recurrent Finsler manifolds, Balkan

J. Geom. Appl., 18 (2013), 101-113.

14. Nabil L. Youssef and A. Soleiman, Some types of recurrence in Finsler geometry, sub-

mitted. arXiv: 1607.07468v2 [math.DG].

15. Nabil L. Youssef, S. H. Abed and A. Soleiman, A global approach to the theory of special

Finsler manifolds, J. Math. Kyoto Univ., 48 (2008), 857-893.

16. Nabil L. Youssef, S. H. Abed and A. Soleiman, A global theory of conformal Finsler

geometry, Tensor, N. S., 69 (2008), 155–178.

17. Nabil L. Youssef, S. H. Abed and A. Soleiman, Cartan and Berwald connections in the

pullback formalism, Algebras, Groups and Geometries, 25 (2008), 363–386.

18. Nabil L. Youssef, S. H. Abed and A. Soleiman, A global approach to the theory of con-

nections in Finsler geometry, Tensor, N. S., 71 (2009), 187-208.

19. Nabil L. Youssef, S. H. Abed and A. Soleiman, Concurrent π-vector fields and eneregy

β-change, Int. J. Geom. Meth. Mod. Phys., 6 (2009), 1003-1031.

20. Nabil L. Youssef, S. H. Abed and A. Soleiman, Geometric objects associated with the

fundumental connections in Finsler geometry, J. Egypt. Math. Soc., 18 (2010), 67-90.

Received: 10.06.2023

Accepted: 14.07.2023


