On Birecurrent for Some Tensors in Various Finsler Spaces

Alaa A. Abdallah^a, Ahmed A. Hamoud^b, A. Navlekar^c, Kirtiwant Ghadle^d, Basel Hardan^e, Homan Emadifar^{f*}, Masoumeh Khademi^f

^aDepartment of Mathematics, Abyan University, Abyan, Yemen. E-mail: maths.aab@bamu.ac.in

^bDepartment of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen E-mail: ahmed.hamoud@taiz.edu.ye

 $^c{\rm Department}$ of Mathematics, Pratishthan Mahavidyalaya, Paithan, India. E-mail: dr.navlekar@gmail.com

^dDepartment of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.

E-mail: ghadle.maths@bamu.ac.in

^eDepartment of Mathematics, Abyan University, Abyan, Yemen.

E-mail: bassil2003@gmail.com

 f Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

E-mail: homan_emadi@yahoo.com(H.E), dr.amonaft@gmail.com(M.KH)

Abstract. The $\mathfrak{B}C-$ recurrent Finsler space introduced by Alaa et al. [1]. Now in this paper, we introduce and extend $\mathfrak{B}C-$ birecurrent Finsler space by using some properties of different spaces. We study the relationship between Cartan's second curvature tensor P^i_{jkh} and (h)hv torsion tensor C^i_{jk} in sense of Berwald. Additionally, the necessary and sufficient condition for some tensors which satisfy birecurrence property will be discuss in different spaces. Four theorems have been established and proved.

Keywords: $\mathfrak{B}C$ – birecurrent space, birecurrence property, P2 –like space, P^* –space, generalized P-reducible space.

^{*}Corresponding Author

1. Introduction

The tensors which satisfy a birecurrence property in Finsler spaces has been discussed by the Finslerian geometers. The concept of C-birecurrent space in sense of Cartan and Berwald were studied by Pandey and Verma [20] and Sarangi and Goswami [13], respectively. Saleem [6] discussed C^h -generalized birecurrent space and C^h -special generalized birecurrent space. Pandey and Verma [20], Otman [9], Hanballa [8], Alqufail et al. [14] and Dikshit [23] introduced C^h - birecurrent space, $\mathfrak{B}P$ - birecurrent space, $\mathfrak{B}K$ -birecurrent space, K^h - birecurrent space and K^h - birecurrent space, respectively. Also, Qasem and Hanballa [10] studied K^h -generalized birecurrent space.

In the same vein, Saleem and Abdallah [7] introduced the U^h – birecurrent Finsler space and discussed the necessary and sufficient condition for some tensors which satisfy the birecurrence property.

Regarding to special spaces of Finsler space, Pandey and Dikshit [21] discussed P^* – and P—reducible Finsler space of recurrent curvature tensor, Otman [9] studied the properties of P2—like space and P^* —space in P^h —birecurrent space. In addition, Saleem [6] studied P2—like—generalized birecurrent space and P2—like— C^h —special generalized birecurrent. Further, Saxena and Swaroop [22] used P—reducibility condition in spacial Finsler spaces. Recently, the properties of P2—like space, P^* —space and generalized P-reducible space in generalized P-recurrent space have been studied by [2, 3]. The main idea of this paper to concentrate on obtaining the necessary and sufficient condition for P^i_{jkh} , P_{ijkh} , P_{ijk} , P_{jk} , P_k and P which satisfy birecurrence property in various spaces.

2. Preliminaries

In this section, important concept of Finsler geometry will be given in this paper. An n-dimensional space X_n equipped with a function F(x, y) that denoted by $F_n = (X_n, F(x, y))$ called a Finsler space if the function F(x, y) satisfying the request conditions [5, 12, 15, 24].

Matsumoto [18] introduced the (h)hv-torsion tensor C_{ijk} that is positively homogeneous of degree -1 in y^i and defined by

$$C_{ijk} = \frac{1}{2}\dot{\partial}_i g_{jk} = \frac{1}{4}\dot{\partial}_i\dot{\partial}_j\dot{\partial}_k F^2.$$

By using Euler's theorem on homogeneous function, we get

a)
$$C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0$$
 and b) $C^i_{jk} y^j = C^i_{kj} y^j = 0$, (2.1)

where C_{jk}^{i} is called associate tensor of the tensor C_{ijk} , these tensors are defined by

a)
$$C_{ik}^h = C_{ijk}g^{hj}$$
, b) $C_{ji}^i = C_j$ and c) $C_k y^k = C$, (2.2)

The unit vector l^i and the associative vector l_i with the direction of y^i are given by

a)
$$l^i = \frac{y^i}{F}$$
 and b) $l_i = \frac{y_i}{F}$. (2.3)

Berwald covariant derivative $\mathfrak{B}_k T_j^i$ of an arbitrary tensor field T_j^i with respect to x^k is given by [12]

$$\mathfrak{B}_k T_i^i = \partial_k T_i^i - (\dot{\partial}_r T_i^i) G_k^r + T_i^r G_{rk}^i - T_r^i G_{ik}^r.$$

Berwald covariant derivative of the vector y^i vanish identically, i.e.

$$\mathfrak{B}_k y^i = 0. (2.4)$$

The tensor P_{jkh}^i is called hv-curvature tensor (Cartan's second curvature tensor) is positively homogeneous of degree -1 in y^i and defined by [12]

$$P_{jkh}^{i} = C_{kh|j}^{i} - g^{ir}C_{jkh|r} + C_{jk}^{r}P_{rh}^{i} - P_{jh}^{r}C_{rk}^{i},$$
(2.5)

which satisfies the relation

$$P_{jkh}^{i}y^{j} = \Gamma_{jkh}^{*i}y^{j} = P_{kh}^{i} = C_{kh|r}^{i}y^{r},$$
(2.6)

where P_{kh}^{i} is (v)hv-torsion tensor which satisfies

$$P_{kh}^i = P_{rkh}g^{ir}, (2.7)$$

where P_{rkh} is called associative tensor for v(hv)-torsion tensor.

P— Ricci tensor P_{jk} , curvature vector P_k and curvature scalar P of Cartan's second curvature tensor are given by

a)
$$P_{jk} = P_{jki}^i$$
, b) $P_{ki}^i = P_k$ and c) $P = P_k y^k$, (2.8)

respectively.

Definition 2.1. A Finsler space F_n is called a P2-like space if the Cartan's second curvature tensor P_{jkh}^i is characterized by the condition [18]

$$P_{jkh}^{i} = \varphi_{j} C_{kh}^{i} - \varphi^{i} C_{jkh}, \qquad (2.9)$$

where φ_j and φ^i are non - zero covariant and contravariant vectors field, respectively.

Definition 2.2. A Finsler space F_n is called a P^* -Finsler space if the (v)hv-torsion tensor P_{kh}^i is characterized by the condition [11]

$$P_{kh}^i = \varphi C_{kh}^i, \tag{2.10}$$

where $P^i_{jkh}y^j = P^i_{kh} = C^i_{kh|s}y^s$.

Definition 2.3. A Finsler space F_n is called a generalized P-reducible space if the associate tensor P_{jkh} of (v)hv-torsion tensor P_{kh}^i is characterized by the condition [19, 25]

$$P_{ikh} = \lambda C_{ikh} + \vartheta (h_{ik}C_h + h_{kh}C_i + h_{hi}C_k), \tag{2.11}$$

where λ and ϑ are scalar vectors positively homogeneous of degree one in y^j and h_{jk} is the angular metric tensor.

Definition 2.4. Let the current coordinates in the tangent space at the point x_0 be x^i , then the indicatrix I_{n-1} is a hypersurface defined by [12] $F(x_0, x^i) = 1$ or by the parametric form defined by $x^i = x^i(u^a)$, $a = 1, 2, \ldots, n-1$.

Definition 2.5. The projection of any tensor T_j^i on indicatrix I_{n-1} given by [12, 16]

$$p.T_j^i = T_b^a h_a^i h_j^b, (2.12)$$

where

$$h_c^i = \delta_c^i - l^i l_c. (2.13)$$

The projection of the vector y^i , the unit vector l^i and the metric tensor g_{ij} on the indicatrix are given by $p.y^i = 0$, $p.l^i = 0$ and $p.g_{ij} = h_{ij}$, where $h_{ij} = g_{ij} - l_i l_j$.

3. On $\mathfrak{B}C$ -Birecurrent Space

In this section, we find the condition for different tensors which behave as birecurrent in $\mathfrak{B}C$ -birecurrent space. Matsumoto [17] introduced a Finsler space which the (h)hv-torsion tensor C_{ijk} and its associate tensor C_{jk}^i satisfy the recurrence property in sense of Cartan. This space is called C^h -recurrent space and characterized by the conditions

a)
$$C_{kh|m}^i = \lambda_m C_{kh}^i$$
 and b) $C_{jkh|m} = \lambda_m C_{jkh}$. (3.1)

Alaa et al. [1] introduced $\mathfrak{B}C - RF_n$ which is characterized by the conditions

a)
$$\mathfrak{B}_m C_{kh}^i = \lambda_m C_{kh}^i$$
 and b) $\mathfrak{B}_m C_{jkh} = \lambda_m C_{jkh}$. (3.2)

Sarangi and Goswami [13] introduced a Finsler space which the (h)hv- torsion tensor C_{ijk} and its associate tensor C_{jk}^i satisfy the birecurrence property in sense of Berwald and called it C-birecurrent space. Let us denote to this space briefly by a $\mathfrak{B}C - BRF_n$. This space characterized by the conditions

a)
$$\mathfrak{B}_l \mathfrak{B}_m C_{kh}^i = a_{lm} C_{kh}^i$$
 and b) $\mathfrak{B}_l \mathfrak{B}_m C_{jkh} = a_{lm} C_{jkh}$, (3.3)

where $a_{lm} = \mathfrak{B}_l \lambda_m + \lambda_l \lambda_m$. Using eq. (3.1) in (2.5), we get

$$P_{ikh}^{i} = \lambda_{i} C_{kh}^{i} - \lambda^{i} C_{jkh} + C_{jk}^{r} P_{rh}^{i} - C_{rk}^{i} P_{ih}^{r}, \tag{3.4}$$

where $\lambda^i = \lambda_r g^{ir}$.

In next theorem we get the necessary and sufficient condition for some tensors which behave as birecurrent tensor in $\mathfrak{B}C - BRF_n$.

Theorem 3.1. In $\mathfrak{B}C-BRF_n$, Cartan's second curvature tensor P^i_{jkh} , torsion tensor P^i_{kh} , P-Ricci tensor P_{jk} , curvature vector P_k and curvature scalar P satisfy the birecurrence property if and only if

$$\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{kh}^{i}$$

$$-\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda^{i}) - (\mathfrak{B}_{m}\lambda^{i})\lambda_{l} - (\mathfrak{B}_{l}\lambda^{i})\lambda_{m}\}C_{jkh}$$

$$+\{\lambda_{m}(\mathfrak{B}_{l}P_{rh}^{i}) + \lambda_{l}(\mathfrak{B}_{m}P_{rh}^{i}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{rh}^{i})\}C_{jk}^{r}$$

$$-\{\lambda_{m}(\mathfrak{B}_{l}P_{jh}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{jh}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jh}^{r})\}C_{rk}^{i} = 0, \qquad (3.5)$$

$$\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{kh}^{i}y^{j}$$

$$-\{\lambda_{m}(\mathfrak{B}_{l}P_{jh}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{jh}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jh}^{r})\}C_{rk}^{i}y^{j} = 0, \qquad (3.6)$$

$$\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{k}$$

$$-\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda^{i}) - (\mathfrak{B}_{m}\lambda^{i})\lambda_{l} - (\mathfrak{B}_{l}\lambda^{i})\lambda_{m}\}C_{jki}$$

$$+\{\lambda_{m}(\mathfrak{B}_{l}P_{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{r})\}C_{jk}^{r}$$

$$-\{\lambda_{m}(\mathfrak{B}_{l}P_{ji}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{ji}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{ji}^{r})\}C_{rk}^{r} = 0, \qquad (3.7)$$

$$\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{k}y^{j} - \{\lambda_{m}(\mathfrak{B}_{l}P_{ji}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{ji}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{ji}^{r})\}C_{rk}^{i}y^{j} = 0,$$
(3.8)

and

$$\{(\mathfrak{B}_l\mathfrak{B}_m\lambda_i) + (\mathfrak{B}_m\lambda_i)\lambda_l + (\mathfrak{B}_l\lambda_i)\lambda_m\}Cy^j = 0, \tag{3.9}$$

respectively.

Proof. Taking \mathfrak{B} — covariant derivative for eq. (3.4) twice with respect to x^m and x^l , respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$\begin{split} \mathfrak{B}_{l}\mathfrak{B}_{m}P_{jkh}^{i} &= a_{lm}(\lambda_{j}C_{kh}^{i} - \lambda^{i}C_{jkh} + C_{jk}^{r}P_{rh}^{i} - C_{rk}^{i}P_{jh}^{r}) \\ &+ \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{kh}^{i} \\ &- \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda^{i}) - (\mathfrak{B}_{m}\lambda^{i})\lambda_{l} - (\mathfrak{B}_{l}\lambda^{i})\lambda_{m}\}C_{jkh} \\ &+ \{\lambda_{m}(\mathfrak{B}_{l}P_{rh}^{i}) + \lambda_{l}(\mathfrak{B}_{m}P_{rh}^{i}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{rh}^{i})\}C_{jk}^{r} \\ &- \{\lambda_{m}(\mathfrak{B}_{l}P_{jh}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{jh}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jh}^{r})\}C_{rk}^{r}. \end{split}$$

Using eq. (3.4) in above equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jkh}^{i} = a_{lm}P_{jkh}^{i} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{kh}^{i}$$

$$-\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda^{i}) - (\mathfrak{B}_{m}\lambda^{i})\lambda_{l} - (\mathfrak{B}_{l}\lambda^{i})\lambda_{m}\}C_{jkh}$$

$$+\{\lambda_{m}(\mathfrak{B}_{l}P_{rh}^{i}) + \lambda_{l}(\mathfrak{B}_{m}P_{rh}^{i}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{rh}^{i})\}C_{jk}^{r}$$

$$-\{\lambda_{m}(\mathfrak{B}_{l}P_{jh}^{i}) + \lambda_{l}(\mathfrak{B}_{m}P_{jh}^{i}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jh}^{i})\}C_{rk}^{i}.$$
 (3.10)

This shows that

$$\mathfrak{B}_l \mathfrak{B}_m P^i_{jkh} = a_{lm} P^i_{jkh}. \tag{3.11}$$

if and only if eq. (3.5) holds.

Transvecting eq. (3.10) by y^j , using (2.1), (2.4) and (2.6), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{kh}^{i} = a_{lm}P_{kh}^{i} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{kh}^{i}y^{j} - \{\lambda_{m}(\mathfrak{B}_{l}P_{lh}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{lh}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{lh}^{r})\}C_{rk}^{i}y^{j}$$
(3.12)

This shows that

$$\mathfrak{B}_l \mathfrak{B}_m P_{kh}^i = a_{lm} P_{kh}^i. \tag{3.13}$$

if and only if eq. (3.6) holds.

Contracting the indices i and h in eq. (3.10), using (2.2) and (2.8), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jk} = a_{lm}P_{jk} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{k}
-\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda^{i}) - (\mathfrak{B}_{m}\lambda^{i})\lambda_{l} - (\mathfrak{B}_{l}\lambda^{i})\lambda_{m}\}C_{jki}
+\{\lambda_{m}(\mathfrak{B}_{l}P_{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{r})\}C_{jk}^{r}
-\{\lambda_{m}(\mathfrak{B}_{l}P_{ii}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{ii}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{ii}^{r})\}C_{rk}^{i}.$$
(3.14)

This shows that

$$\mathfrak{B}_l \mathfrak{B}_m P_{jk} = a_{lm} P_{jk}. \tag{3.15}$$

if and only if eq. (3.7) holds.

Contracting the indices i and h in eq. (3.12), using (2.2) and (2.8), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{k} = a_{lm}P_{k} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{j}) + (\mathfrak{B}_{m}\lambda_{j})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{j})\lambda_{m}\}C_{k}y^{j} - \{\lambda_{m}(\mathfrak{B}_{l}P_{ji}^{r}) + \lambda_{l}(\mathfrak{B}_{m}P_{ji}^{r}) + (\mathfrak{B}_{l}\mathfrak{B}_{m}P_{ji}^{r})\}C_{rk}^{i}y^{j}$$
(3.16)

This shows that

$$\mathfrak{B}_l \mathfrak{B}_m P_k = a_{lm} P_k \tag{3.17}$$

if and only if eq. (3.8) holds.

Transvecting eq. (3.16) by y^k , using (2.2), (2.4) and (2.8), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P = a_{lm}P + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda_{i}) + (\mathfrak{B}_{m}\lambda_{i})\lambda_{l} + (\mathfrak{B}_{l}\lambda_{i})\lambda_{m}\}Cy^{j}$$
(3.18)

This shows that

$$\mathfrak{B}_l \mathfrak{B}_m P = a_{lm} P. \tag{3.19}$$

if and only if eq. (3.9) holds.

Consequently, from eqs. (3.11), (3.13), (3.15), (3.17) and (3.19), we deduce that the behavior of P^i_{jkh} , P^i_{kh} , P_{jk} , P_k and P in $\mathfrak{B}C - BRF_n$ as birecurrent if and only if eqs. (3.5), (3.6), (3.7), (3.8) and (3.9), respectively hold. Hence, we have proved this theorem.

4. Special Spaces of $\mathfrak{B}C$ -Birecurrent Space

In this section, we merge the $\mathfrak{B}C-$ birecurrent space with particular spaces of Finsler space to get new spaces.

4.1. A P2-Like $\mathfrak{B}C$ -Birecurrent Space.

Definition 4.1. The $\mathfrak{B}C$ -birecurrent space which is P2-like space, i.e. satisfies the condition (2.9), will be called a P2-like $\mathfrak{B}C$ -birecurrent space and will be denoted briefly by P2-like- $\mathfrak{B}C$ - BRF_n .

In next theorem we get the necessary and sufficient condition for some tensors which behave as birecurrent tensor in P2-like- $\mathfrak{B}C - BRF_n$.

Theorem 4.2. In P2-like- $\mathfrak{B}C$ – BRF_n , Cartans second curvature tensor P^i_{jkh} , torsion tensor P^i_{kh} , P-Ricci tensor P_{jk} and curvature vector P_k satisfy the birecurrence property if and only if

$$\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta_{j}) + (\mathfrak{B}_{m}\vartheta_{j})\lambda_{l} + (\mathfrak{B}_{l}\vartheta_{j})\lambda_{m}\}C_{kh}^{i} - \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta^{i}) - (\mathfrak{B}_{m}\vartheta^{i})\lambda_{l} - (\mathfrak{B}_{l}\vartheta^{i})\lambda_{m}\}C_{jkh} = 0,$$

$$(4.1)$$

$$\{(\mathfrak{B}_l\mathfrak{B}_m\vartheta_j) + (\mathfrak{B}_m\vartheta_j)\lambda_l + (\mathfrak{B}_l\vartheta_j)\lambda_m\}C_{kh}^iy^j = 0, \tag{4.2}$$

$$\{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta_{j}) + (\mathfrak{B}_{m}\vartheta_{j})\lambda_{l} + (\mathfrak{B}_{l}\vartheta_{j})\lambda_{m}\}C_{k} - \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta^{i}) - (\mathfrak{B}_{m}\vartheta^{i})\lambda_{l} - (\mathfrak{B}_{l}\vartheta^{i})\lambda_{m}\}C_{jki} = 0$$

$$(4.3)$$

and

$$\{(\mathfrak{B}_l\mathfrak{B}_m\vartheta_j) + (\mathfrak{B}_m\vartheta_j)\lambda_l + (\mathfrak{B}_l\vartheta_j)\lambda_m\}C_ky^j = 0. \tag{4.4}$$

respectively.

Proof. Taking $\mathfrak{B}-$ covariant derivative for the condition (2.9) twice with respect to x^m and x^l , respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jkh}^{i} = a_{lm}(\vartheta_{j}C_{kh}^{i} - \vartheta^{i}C_{jkh})
+ \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta_{j}) + (\mathfrak{B}_{m}\vartheta_{j})\lambda_{l} + (\mathfrak{B}_{l}\vartheta_{j})\lambda_{m}\}C_{kh}^{i}
- \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda^{i}) - (\mathfrak{B}_{m}\vartheta^{i})\lambda_{l} - (\mathfrak{B}_{l}\vartheta^{i})\lambda_{m}\}C_{jkh}^{i}.$$

Using the condition (2.9) in above equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jkh}^{i} = a_{lm}P_{jkh}^{i} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta_{j}) + (\mathfrak{B}_{m}\vartheta_{j})\lambda_{l} + (\mathfrak{B}_{l}\vartheta_{j})\lambda_{m}\}C_{kh}^{i} - \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta^{i}) - (\mathfrak{B}_{m}\vartheta^{i})\lambda_{l} - (\mathfrak{B}_{l}\vartheta^{i})\lambda_{m}\}C_{jkh}.$$
(4.5)

This shows that $\mathfrak{B}_l \mathfrak{B}_m P_{jkh}^i = a_{lm} P_{jkh}^i$ if and only if eq. (4.1) holds. Transvecting eq. (4.5) by y^j using (2.1), (2.4) and (2.6), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{kh}^{i} = a_{lm}P_{kh}^{i} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta_{j}) + (\mathfrak{B}_{m}\vartheta_{j})\lambda_{l} + (\mathfrak{B}_{l}\vartheta_{j})\lambda_{m}\}C_{kh}^{i}y^{j}.$$
(4.6)

This shows that $\mathfrak{B}_l\mathfrak{B}_m P_{kh}^i = a_{lm} P_{kh}^i$ if and only if eq. (4.2) holds.

Contracting the indices i and h in eq. (4.5), using (2.2) and (2.8), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jk} = a_{lm}P_{jk} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta_{j}) + (\mathfrak{B}_{m}\vartheta_{j})\lambda_{l} + (\mathfrak{B}_{l}\vartheta_{j})\lambda_{m}\}C_{k} - \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta^{i}) - (\mathfrak{B}_{m}\vartheta^{i})\lambda_{l} - (\mathfrak{B}_{l}\vartheta^{i})\lambda_{m}\}C_{jki}.$$
(4.7)

This shows that $\mathfrak{B}_l\mathfrak{B}_mP_{jk}=a_{lm}P_{jk}$ if and only if eq. (4.3) holds.

Contracting the indices i and h in eq. (4.6), using (2.2) and (2.8), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{k} = a_{lm}P_{k} + \{(\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta_{j}) + (\mathfrak{B}_{m}\vartheta_{j})\lambda_{l} + (\mathfrak{B}_{l}\vartheta_{j})\lambda_{m}\}C_{k}y^{j}$$
(4.8)

This shows that $\mathfrak{B}_l\mathfrak{B}_mP_k=a_{lm}P_k$ if and only if eq. (4.4) holds.

Consequently, from previous equations we proved that the behavior of P_{jkh}^i , P_{jk}^i , P_{jk}^i and P_k in P2-like- $\mathfrak{B}C - BRF_n$ as birecurrent if and only if eqs. (4.1), (4.2), (4.3) and (4.4), respectively hold. Hence, we have proved this theorem.

4.2. A P^* - $\mathfrak{B}C$ -Birecurrent Space.

Definition 4.3. The $\mathfrak{B}C$ -birecurrent space which is P^* - space, i.e. satisfies the condition (2.10), will be called a P^* - $\mathfrak{B}C$ -birecurrent space and will be denoted briefly by P^* - $\mathfrak{B}C$ - BRF_n .

In next theorem we get the necessary and sufficient condition for some tensors which behave as recurrent tensor in $P^* - \mathfrak{B}C - BRF_n$.

Theorem 4.4. In $P^* - \mathfrak{B}C - BRF_n$, the torsion tensor P_{kh}^i , curvature vector P_k and curvature scalar P satisfy the birecurrence property if and only if

$$\left[\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta + \lambda_{l}\left(\mathfrak{B}_{m}\vartheta\right) + \lambda_{m}\left(\mathfrak{B}_{l}\vartheta\right)\right]C_{kh}^{i} = 0,\tag{4.9}$$

$$\left[\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta + \lambda_{l}\left(\mathfrak{B}_{m}\vartheta\right) + \lambda_{m}\left(\mathfrak{B}_{l}\vartheta\right)\right]C_{k} = 0 \tag{4.10}$$

and

$$\left[\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta + \lambda_{l}\left(\mathfrak{B}_{m}\vartheta\right) + \lambda_{m}\left(\mathfrak{B}_{l}\vartheta\right)\right]C = 0,\tag{4.11}$$

respectively.

Proof. Taking \mathfrak{B} — covariant derivative for the condition (2.10) twice with respect to x^m and x^l , respectively, using eqs.(3.2) and (3.3) in the resulting equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{kh}^{i} = \vartheta a_{lm}C_{kh}^{i} + \left[\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta + \lambda_{l}\left(\mathfrak{B}_{m}\vartheta\right) + \lambda_{m}\left(\mathfrak{B}_{l}\vartheta\right)\right]C_{kh}^{i}.$$

Using the condition (2.10) in above equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{kh}^{i} = a_{lm}P_{kh}^{i} + \left[\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta + \lambda_{l}\left(\mathfrak{B}_{m}\vartheta\right) + \lambda_{m}\left(\mathfrak{B}_{l}\vartheta\right)\right]C_{kh}^{i} \tag{4.12}$$

This shows that $\mathfrak{B}_l\mathfrak{B}_m P_{kh}^i = a_{lm} P_{kh}^i$ if and only if eq. (4.9) holds.

Contracting the indices i and h in eq. (4.12), using (2.2) and (2.8), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{k} = a_{lm}P_{k} + \left[\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta + \lambda_{l}\left(\mathfrak{B}_{m}\vartheta\right) + \lambda_{m}\left(\mathfrak{B}_{l}\vartheta\right)\right]C_{k} \tag{4.13}$$

This shows that $\mathfrak{B}_l\mathfrak{B}_mP_k=a_{lm}P_k$ if and only if eq. (4.10) holds.

Transvecting eq. (4.13) by y^k , using (2.2) and (2.8), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P = a_{lm}P + \left[\mathfrak{B}_{l}\mathfrak{B}_{m}\vartheta + \lambda_{l}\left(\mathfrak{B}_{m}\vartheta\right) + \lambda_{m}\left(\mathfrak{B}_{l}\vartheta\right)\right]C \tag{4.14}$$

This shows that $\mathfrak{B}_l\mathfrak{B}_mP=a_{lm}P$ if and only if eq. (4.11) holds.

Consequently, from previous equations we proved that the behavior of P_{kh}^i , P_k and P in $P^* - \mathfrak{B}C - BRF_n$ as birecurrent if and only if eqs. (4.9), (4.10) and (4.11), respectively hold. Hence, we have proved this theorem.

4.3. A P-Reducible $-\mathfrak{B}C$ -Birecurrent Space.

Definition 4.5. The $\mathfrak{B}C$ -birecurrent space which is generalized P-reducible space, i.e. satisfies the condition (2.11), will be called a P-reducible $-\mathfrak{B}C$ -birecurrent space and will be denoted briefly by P-reducible $-\mathfrak{B}C$ $-BRF_n$.

In next theorem we get the necessary and sufficient condition for some tensors which be non-vanishing in P-reducible $-\mathfrak{B}C - BRF_n$.

Theorem 4.6. In P-reducible- $\mathfrak{B}C$ – BRF_n , Berwalds covariant derivative of the second order for the tensors $\vartheta(h_k^iC_h + h_{kh}C^i + h_h^iC_k)$ and $\vartheta(h_{jk}C_h + h_{kh}C_j + h_{hj}C_k)$ are given by

$$\mathfrak{B}_{l}\mathfrak{B}_{m}\left[\vartheta(h_{k}^{i}C_{h}+h_{kh}C^{j}+h_{h}^{i}C_{k})\right] = a_{lm}\vartheta(h_{k}^{i}C_{h}+h_{kh}C^{i}+h_{h}^{i}C_{k}) \quad (4.15)$$

$$- \left[\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda+\left(\mathfrak{B}_{m}\lambda\right)\lambda_{l}+\left(\mathfrak{B}_{l}\lambda\right)\lambda_{m}\right]C_{kh}^{i}$$

and

$$\mathfrak{B}_{l}\mathfrak{B}_{m}[\vartheta(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k})] = a_{lm}\vartheta(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k})$$

$$-[\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda + (\mathfrak{B}_{m}\lambda)\lambda_{l} + (\mathfrak{B}_{l}\lambda)\lambda_{m}]C_{jkh}$$
(4.16)

if and only if the torsion tensor P_{kh}^i and associate torsion tensor P_{jkh} satisfy the birecurrence property, respectively.

Proof. Transvecting the condition (2.11) by g^{ij} , using (2.7) and (2.2), we get

$$P_{kh}^{i} = \lambda C_{kh}^{i} + \vartheta(h_{k}^{i} C_{h} + h_{kh} C^{i} + h_{h}^{i} C_{k}), \tag{4.17}$$

where $h_k^i = g^{ij}h_{jk}$ and $C^i = g^{ij}C_j$.

Taking $\mathfrak{B}-$ covariant derivative for the condition (4.17) twice with respect to x^m and x^l respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{kh}^{i} = \lambda a_{lm}C_{kh}^{i} + \left[\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda + (\mathfrak{B}_{m}\lambda)\lambda_{l} + (\mathfrak{B}_{l}\lambda)\lambda_{m}\right]C_{kh}^{i} + \mathfrak{B}_{l}\mathfrak{B}_{m}\left[\vartheta(h_{k}^{i}C_{h} + h_{kh}C^{i} + h_{h}^{i}C_{k})\right].$$

Using the condition (4.17) in above equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{kh}^{i} = a_{lm}P_{kh}^{i} - a_{lm}\vartheta(h_{k}^{i}C_{h} + h_{kh}C^{i} + h_{h}^{i}C_{k}) + [\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda + (\mathfrak{B}_{m}\lambda)\lambda_{l} + (\mathfrak{B}_{l}\lambda)\lambda_{m}]C_{kh}^{i} + \mathfrak{B}_{l}\mathfrak{B}_{m}[\vartheta(h_{k}^{i}C_{h} + h_{kh}C^{j} + h_{h}^{i}C_{k})].$$

Then Berwalds covariant derivative of the second order for the tensor $\varphi(h_k^i C_h + h_{kh}C^i + h_h^i C_k)$ satisfies eq. (4.15) if and only if

$$\mathfrak{B}_l \mathfrak{B}_m P_{kh}^i = a_{lm} P_{kh}^i.$$

The above equation refer to P^i_{kh} satisfies the birecurrence property.

Taking $\mathfrak{B}-$ covariant derivative for the condition (2.11) twice with respect to x^m and x^l , respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jkh} = \lambda a_{lm}C_{jkh} + [\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda + (\mathfrak{B}_{m}\lambda)\lambda_{l} + (\mathfrak{B}_{l}\lambda)\lambda_{m}]C_{jkh} + \mathfrak{B}_{l}\mathfrak{B}_{m}[\vartheta(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k})].$$

Using the condition (2.11) in above equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}P_{jkh} = a_{lm}P_{jkh} - a_{lm}\vartheta(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k})$$

$$+ \left[\mathfrak{B}_{l}\mathfrak{B}_{m}\lambda + (\mathfrak{B}_{m}\lambda)\lambda_{l} + (\mathfrak{B}_{l}\lambda)\lambda_{m}\right]C_{jkh}$$

$$+ \mathfrak{B}_{l}\mathfrak{B}_{m}\left[\vartheta(h_{jk}C_{h} + h_{kh}C_{j} + h_{hj}C_{k})\right].$$

Then Berwalds covariant derivative of the second order for the tensor $\varphi(h_{jk}C_h + h_{kh}C_j + h_{hj}C_k)$ satisfies eq. (4.16) if and only if

$$\mathfrak{B}_l \mathfrak{B}_m P_{jkh} = a_{lm} P_{jkh}.$$

The above equation refer to P_{jkh} satisfies the birecurrence property. Hence, we have proved this theorem.

5. An Example

In this section, we give an example to clarify the proved findings.

Example 5.1. The behavior of the torsion tensor P_{kh}^i as birecurrent if and only if the projection on indicatrix for it is also birecurrent.

Firstly, since the torsion tensor P_{kh}^i behaves as birecurrent, then the condition (3.13) is satisfied. In view of (2.12), the projection of the torsion tensor P_{kh}^i on indicatrix is given by

$$p.P_{kh}^{i} = P_{bc}^{a}h_{a}^{i}h_{k}^{b}h_{b}^{c}. (5.1)$$

Using \mathfrak{B} —covariant derivative for eq. (5.1) twice with respect to x^m and x^l , respectively, using the condition (3.13) and the fact that h_b^a is covariant constant in above equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}\left(p.P_{kh}^{i}\right)=a_{lm}\left(P_{bc}^{a}h_{a}^{i}h_{k}^{b}h_{h}^{c}\right).$$

Using eq. (5.1) in above equation, we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}\left(p.P_{kh}^{i}\right) = a_{lm}\left(p.P_{kh}^{i}\right). \tag{5.2}$$

Equation (5.2) refers to the projection on indicatrix for the torsion tensor P_{kh}^{i} behaves as birecurrent.

Secondly, let the projection on indicatrix for the torsion tensor P_{kh}^i is birecurrent, i.e. satisfy eq. (5.2). Using (2.12) in eq. (5.2), we get

$$\mathfrak{B}_{l}\mathfrak{B}_{m}\left(P_{bc}^{a}h_{a}^{i}h_{k}^{b}h_{h}^{c}\right) = a_{lm}\left(P_{bc}^{a}h_{a}^{i}h_{k}^{b}h_{h}^{c}\right).$$

By using (2.13) in above equation, we get

$$\begin{split} &\mathfrak{B}_{l}\mathfrak{B}_{m}\big[P_{kh}^{i}-P_{kc}^{i}l^{c}l_{h}-P_{bh}^{i}l^{b}l_{k}+P_{bc}^{i}l^{b}l_{k}l^{c}l_{h}\\ &-P_{kh}^{a}l^{i}l_{a}+P_{kc}^{a}l^{i}l_{a}l^{c}l_{h}+P_{bh}^{a}l^{i}l_{a}l^{b}l_{k}-P_{bc}^{a}l^{i}l_{a}l^{b}l_{k}l^{c}l_{h}\big]\\ &=a_{lm}\big[P_{kh}^{i}-P_{kc}^{i}l^{c}l_{h}-P_{bh}^{i}l^{b}l_{k}+P_{bc}^{i}l^{b}l_{k}l^{c}l_{h}\\ &-P_{kh}^{a}l^{i}l_{a}+P_{kc}^{a}l^{i}l_{a}l^{c}l_{h}+P_{bh}^{a}l^{i}l_{a}l^{b}l_{k}-P_{bc}^{a}l^{i}l_{a}l^{b}l_{k}l^{c}l_{h}\big]. \end{split}$$

In view of (2.3) and if

$$P_{bc}^{a}y_{a} = P_{bc}^{a}y^{b} = P_{bc}^{a}y^{c} = 0,$$

then above equation can be written as

$$\mathfrak{B}_l \mathfrak{B}_m P_{kh}^i = a_{lm} P_{kh}^i.$$

The above equation means the torsion tensor P_{kh}^i behaves as birecurrent.

6. Conclusion

We obtained the necessary and sufficient condition for Cartan's second curvature tensor P^i_{jkh} , associate curvature tensor P_{ijkh} , torsion tensor P^i_{kh} , P-Ricci tensor P_{jk} , curvature vector P_k and scalar curvature P which satisfy birecurrence property in $\mathfrak{B}C - BRF_n$, $P^2 - \mathbb{B}RF_n$, $P^2 - \mathbb{B}RF_n$, and P-reducible $-\mathfrak{B}C - BRF_n$. Furthermore, the relationship between Cartan's second curvature tensor P^i_{jkh} and (h)hvtorsion tensor C^i_{jk} in sense of Berwald has been discussed.

References

- A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On B-covariant derivative of first order for some tensors in different spaces, J. Math. Analysis. Model. 2(2) (2021), 30-37.
- A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, Special types of generalized \$\mathfrak{B}P\$-recurrent spaces, J. Computer. Math. Sci. 10(5) (2019), 972-979.
- 3. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On P*- and P-reducible of Cartan's second curvature tensor, J. Appl. Sci. computation. 6(11) (2019), 13-24.
- A. A. Abdallah, A. A. Navlekar, K. P. Ghadle and A. A. Hamoud, Decomposition for Cartan's second curvature tensor of different order in Finsler spaces, Nonlinear. Functional. Analysis. Appl. 27(2) (2022), 433-448.
- 5. A. A. Abdallah, A. A. Hamoud, A. A. Navlekar and K. P. Ghadle, On special spaces of H(hv)-torsion tensor c_{jkh} in generalized recurrent finsler space, Bull. Pure & Applied. Sci. Math. Stat. **41**(1) (2022), 74-80.
- A. A. Saleem, On certain generalized birecurrent and trirecurrent Finsler spaces, M.Sc. Thesis, University of Aden, Yemen, 2011.

- A. A. Saleem, and A. A. Abdallah, Study On U^h birecurrent Finsler spaces, Int. J. Adv. Res. Sci. Commun. Tech. 2(3) (2022), 28-39.
- 8. A. M. Hanballa, On covariant differentiation of curvature tensors in Finsler spaces, University of Aden, (Aden), (Yemen), 2016.
- 9. A. M. Otman, On covariant differentiation for curvature tensor of third order in the sense of Berwald, M.sc. Thesis, University of Aden, Yemen, 2018.
- F. Y. Qasem and A. M. Hanballa, On study K^h generalized birecurrent Finsler space, Int. J. Sci. Basic. Appl. Res. 25(3), (2016), 208-216.
- 11. H. Izumi, On P*-Finsler space of scalar curvature, Tensor N.S., 38(1982), 220-222.
- H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen, (1959); 2nd Edit. (in Russian), Nauka, (Moscow), 1981.
- K. C. Sarangi and A. Goswami, On C recurrent Finsler space, J. Int. Acad. Phys. Sci. 10 (2006), 17-24.
- M. A. Alqufail, F. Y. Qasem and A. A. Muhib, On study K^h-birecurrent Finsler spaces, Sci. J. Fac. Edu. Thamar. 2015.
- 15. M. Dahl, An brief introduction to Finsler geometry, Springer, 2006.
- M. Gheorghe, The indicatrix in Finsler geometry, Anal. Sti. Ale. Uuiv. Mat. Tomul LIII, (2007), 163-180.
- M. Matsumoto, On h-isotropic and C^h-recurrent Finsler, J. Math. Kyoto Univ., 11 (1971), 1-9.
- M. Matsumoto, On Finsler spaces with curvature tensor of some special forms, Tensor N.S., 22 (1971), 201-204.
- P. K. Dwivedi, P- reducible Finsler spaces and applications, Int. J. Math. Analysis, 5(5) (2011), 223-229.
- 20. P. N. Pandey and R. Verma, C^h -birecurrent Finsler spaces, J. Int. Acad. Phy. Sci. **2**(1998), 43-50.
- 21. P. N. Pandy and S. Dikshit, On P*- and P-reducible Finsler spaces of recurrent curvature, J. Int. Acad. Phy. Sci. 2 (1998), 11-17.
- 22. P. S. Saxena and P. Swaroop, A study of P^* -reducible Finsler space with Douglas tensor, J. Int. Acad. Phy. Sci. **17**(3) (2013), 277-285.
- S. Dikshit, Certain types of recurrences in Finsler spaces, D. phil. Thesis, University of Allahabad, (Allahabad), (India), 1992.
- 24. S. I. Ohta, Comparison Finsler geometry, Springer International Publishing, 2021.
- 25. S. M. Zamanzadeh, B. Najafi and M. Toomanian, On generalized P-reducible Finsler manifolds, Open. Math. 16(2018), 718-723.

Received: 05.01.2023 Accepted: 22.05.2023