Journal of Finsler Geometry and its Applications

Vol. 3, No. 1 (2022), pp 31-41

DOI: 10.22098/jfga.2022.10171.1059

\mathbb{R} -Complex Finsler Spaces with an Arctangent Finsler Metric

Renu Gill^a, Gauree Shanker^b and Ramdayal Singh Kushwaha^{c*}

 a,c Department of Mathematics and Statistics, Banasthali Vidyapith, Tonk, Rajasthan-India

^bDepartment of Mathematics and Statistics, Central University of Punjab, Bathinda, Punjab, India

E-mail: renu3119@gmail.com

E-mail: gauree.shanker@cup.edu.in
E-mail: bhuramdayal@gmail.com

Abstract. In this paper, we have defined the concept of the \mathbb{R} -complex Finsler space with an arctangent (α, β) -metric $F = \alpha + \epsilon \beta + \beta \ tan^{-1}(\beta/\alpha)$. For this metric, we have obtained the fundamental metric tensor fields g_{ij} and $g_{i\bar{j}}$ as well as their determinants and inverse tensor fields. Further, some properties of non-Hermitian \mathbb{R} -complex Finsler spaces with this metric have been described.

Keywords: Complex Finsler space, \mathbb{R} -complex Finsler space, Fundamental metric tensors.

1. Introduction

The concept of (α, β) -metric has multiple applications in Physics, Ecology, and Biology [7, 15]. It was investigated first by M. Matsumoto in perspective of the generalization of Rander's metric [9]. Afterward, many geometers studied it in great detail and have derived different kinds of (α, β) -metrics like the general (α, β) -metric, Kropina metric, Einstein metric, Matsumoto metric, and Exponential metric etc. in some different geometrical points of view.

The theories of \mathbb{R} -complex Finsler spaces are very new and it was introduced first by G. D. Rizza [13]. G. Munteanu and M. Purcaru [11] have extended the idea of the complex Finsler spaces [1, 3, 10] and got another class of such

^{*}Corresponding Author

spaces. N. Aldea [4] had investigated a class of complex Finsler spaces with two-dimensions. Recently, many researchers [2, 5, 8] have obtained many fundamental results on \mathbb{R} -Complex Finsler spaces.

The paper follows ideas from real Finsler space with an arctangent metric and introduces the similar notion on \mathbb{R} -Complex Finsler Spaces with it defined by

$$F = \alpha + \epsilon \beta + \beta \, \tan^{-1} \left(\frac{\beta}{\alpha} \right). \tag{1.1}$$

For the above mentioned metric, we have obtained the fundamental metric tensor fields g_{ij} and $g_{i\bar{j}}$ along with their determinants and the inverse tensor fields. Further, we have discussed some properties of non-Hermitian \mathbb{R} -complex Finsler spaces with the metric given in equation (1.1).

2. R-Complex Finsler Spaces

Let M be a complex manifold with $dim_c M = n, (z^k)$ be local complex coordinates in a chart (U, ϕ) and T'M its holomorphic tangent bundle. It has a natural structure of complex manifold, $dim_c T'M = 2n$ and the induced coordinates in a local chart on $u \in T'M$ are denoted by $u = (z^k, \eta^k)$. The changes of local coordinates in u are given by the rules:

$$z'^{k} = z'^{k}(z), \ \eta'^{k} = \frac{\partial z'^{k}}{\partial z^{j}} \eta^{j}. \tag{2.1}$$

The natural frame $\left\{\frac{\partial}{\partial z^k}, \frac{\partial}{\partial \eta^k}\right\}$ of $T_u'(T'M)$ transforms with the Jacobi matrix of equation (2.1) changes,

$$\frac{\partial}{\partial z^k} = \frac{\partial z'^j}{\partial z^k} \frac{\partial}{\partial z'^j} + \frac{\partial^2 z'^j}{\partial z^k \partial z^h} \eta^h \frac{\partial}{\partial \eta'^j}, \qquad \frac{\partial}{\partial \eta^k} = \frac{\partial z'^j}{\partial z^k} \frac{\partial}{\partial \eta'^j}.$$

A complex non-linear connection, briefly c.n.c, is a supplementary distribution H(T'M) to the vertical distribution V(T'M) in T'(T'M). The vertical distribution is spanned by $\left\{\frac{\partial}{\partial \eta^k}\right\}$ and an adapted frame in H(T'M) is

$$\frac{\delta}{\delta z^k} = \frac{\partial}{\partial z^k} - N_k^j \frac{\partial}{\partial \eta^j},$$

where N_k^j are the coefficients of the c.n.c. and they have a certain rule of change at (2.1) so that $\frac{\delta}{\delta z^k}$ transform like vectors on the base manifold M. Next, we use the abbreviations:

$$\partial_k = \frac{\partial}{\partial z^k}, \quad \delta_k = \frac{\delta}{\delta z^k}, \dot{\partial}_k = \frac{\partial}{\partial \eta^k}, \quad \partial_{\bar{k}}, \delta_{\bar{k}}, \dot{\partial}_{\bar{k}}$$

for their conjugates. The dual adapted basis of $\{\delta_k, \dot{\partial}_k\}$ are $\{dz^k, \delta\eta^k = d\eta^k + N_i^k dz^j\}$ and $\{d\bar{z}^k, \delta\bar{\eta}^k\}$ their conjugates.

Definition 2.1. [11] An \mathbb{R} -Complex Finsler metric on M is a continuous function $F: T'M \to \mathbb{R}_+$ satisfying:

- i) $L := F^2$ is smooth on $\widetilde{T'M}$ (except the 0 sections),
- ii) $F(z, \eta) \ge 0$, the equality holds if and only if $\eta = 0$,
- iii) $F(z, \lambda \eta, \bar{z}, \lambda \bar{\eta}) = |\lambda| F(z, \eta, \bar{z}, \bar{\eta}), \forall \lambda \in \mathbb{R}.$

Using assertion (i) and (iii) of the definition 2.1, L is (2,0) homogeneous with respect to the real scalars λ , i.e., $L(z, \lambda \eta, \bar{z}, \lambda \bar{\eta}) = \lambda^2 L(z, \eta, \bar{z}, \bar{\eta}), \lambda \in \mathbb{R}$.

Definition 2.2. [6] An \mathbb{R} -Complex Finsler spaces with (α, β) -metric is a pair (M, F), where the fundamental function $F(z, \eta, \bar{z}, \bar{\eta})$ is \mathbb{R} -homogeneous by means of functions $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$,

$$F(z, \eta, \bar{z}, \bar{\eta}) = F(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})), \tag{2.2}$$

where

$$\begin{split} \alpha^2(z,\eta,\bar{z},\bar{\eta}) &= \frac{1}{2}(a_{ij}\eta^i\eta^j + 2a_{i\bar{j}}\eta^i\bar{\eta}^j + a_{\bar{i}\bar{j}}\bar{\eta}^i\bar{\eta}^j) \\ &= Re\{a_{ij}\eta^i\eta^j + a_{i\bar{j}}\eta^i\bar{\eta}^j\}, \\ \beta(z,\eta,\bar{z},\bar{\eta}) &= \frac{1}{2}(b_i\eta^i + b_{\bar{i}}\bar{\eta}^i) \\ &= Re\{b_i\eta^i\}, \end{split}$$

with $a_{ij} = a_{ij}(z)$, $a_{i\bar{j}} = a_{i\bar{j}}(z)$ and $b_i = b_i(z)$, $b_i(z)dz^i$ is a (1,0)-differential form on complex manifold M.

If $a_{ij} = 0$ and $a_{i\bar{j}}$ invertible, then the space is said to be of *Hermitian space*. If $a_{i\bar{j}} = 0$ and a_{ij} invertible, then the space is called *non-Hermitian space*.

Indeed, α and β are homogeneous with respect to η and $\bar{\eta}$, i.e. $\alpha(z, \lambda \eta, \bar{z}, \lambda \bar{\eta}) = \lambda \alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \lambda \eta, \bar{z}, \lambda \bar{\eta}) = \lambda \beta(z, \eta, \bar{z}, \bar{\eta})$, for any $\lambda \in \mathbb{R}_+$. Since L is (2, 0) homogeneous with respect to λ , by using the homogeneity property following equalities hold [6]:

$$\alpha L_{\alpha} + \beta L_{\beta} = 2L,$$

$$\alpha L_{\alpha\alpha} + \beta L_{\alpha\beta} = L_{\alpha},$$

$$\alpha L_{\alpha\beta} + \beta L_{\beta\beta} = L_{\beta},$$

$$\alpha^{2} L_{\alpha\alpha} + 2\alpha\beta L_{\alpha\beta} + \beta^{2} L_{\beta\beta} = 2L,$$

$$\frac{\partial \alpha}{\partial \eta^{i}} \eta^{i} + \frac{\partial \alpha}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} = \alpha,$$

$$\frac{\partial \beta}{\partial \eta^{i}} \eta^{i} + \frac{\partial \beta}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} = \beta,$$
(2.3)

where

$$L_{\alpha} = \frac{\partial L}{\partial \alpha}, \quad L_{\beta} = \frac{\partial L}{\partial \beta}, \quad L_{\alpha\alpha} = \frac{\partial^2 L}{\partial \alpha^2}, \quad L_{\beta\beta} = \frac{\partial^2 L}{\partial \beta^2}, \quad L_{\alpha\beta} = \frac{\partial^2 L}{\partial \alpha \partial \beta}.$$

We consider

$$\frac{\partial \alpha}{\partial \eta^i} = \frac{1}{2\alpha} (a_{ij}\eta^j + a_{i\bar{j}}\bar{\eta}^j) = \frac{1}{2\alpha} l_i, \quad \frac{\partial \beta}{\partial \eta^i} = \frac{1}{2} b_i,$$

and

$$\eta_i = \frac{\partial L}{\partial \eta^i} = \frac{\partial}{\partial \eta^i} F^2 = 2F \frac{\partial F}{\partial \eta^i}$$
$$= \rho_0 l_i + \rho_1 b_i,$$

where

$$l_i = a_{ij}\eta^j + a_{i\bar{j}}\bar{\eta}^j, \tag{2.4}$$

$$b_l = a_{kl}b^k + a_{l\bar{k}}b^{\bar{k}}, (2.5)$$

$$\rho_0 = \frac{1}{2} \frac{L_\alpha}{\alpha}, \qquad \rho_1 = \frac{1}{2} L_\beta.$$
(2.6)

Differentiating ρ_0 and ρ_1 w.r.t. η^j , we get

$$\frac{\partial \rho_0}{\partial \eta^j} = \rho_{-2}l_j + \rho_{-1}b_j,$$

$$\frac{\partial \rho_1}{\partial \eta^i} = \rho_{-1}l_i + \mu_0b_i,$$

where

$$\rho_{-2} = \frac{\alpha L_{\alpha\alpha} - L_{\alpha}}{4\alpha^3}, \ \rho_{-1} = \frac{L_{\alpha\beta}}{4\alpha}, \ \mu_0 = \frac{L_{\beta\beta}}{4}. \tag{2.7}$$

The quantities $\rho_{-2}, \rho_{-1}, \rho_0, \rho_1, \mu_0$ are the invariants of the \mathbb{R} -complex Finsler space with (α, β) -metric [14].

In [11], an R-Complex Finsler space the following conditions hold:

$$\begin{split} &\frac{\partial L}{\partial \eta^i} \eta^i + \frac{\partial L}{\partial \bar{\eta}^i} \bar{\eta}^i = 2L; \ g_{ij} \eta^i + g_{j\bar{i}} \bar{\eta}^i = \frac{\partial L}{\partial \eta^j}; \\ &\frac{\partial g_{ik}}{\partial \eta^j} \eta^j + \frac{\partial g_{ik}}{\partial \bar{\eta}^j} \bar{\eta}^j = 0; \ \frac{\partial g_{i\bar{k}}}{\partial \eta^j} \eta^j + \frac{\partial g_{i\bar{k}}}{\partial \bar{\eta}^j} \bar{\eta}^j = 0; \\ &2L = g_{ij} \eta^i \eta^j + g_{\bar{i}\bar{j}} \bar{\eta}^i \bar{\eta}^j + 2g_{i\bar{j}} \eta^i \bar{\eta}^j, \end{split}$$

where

$$g_{ij} = \frac{\partial^2 L}{\partial \eta^i \partial \eta^j}, \ g_{i\bar{j}} = \frac{\partial^2 L}{\partial \eta^i \partial \bar{\eta}^j}, \ and \ g_{i\bar{j}} = \frac{\partial^2 L}{\partial \bar{\eta}^i \partial \bar{\eta}^j},$$

are the metric tensors of space.

Theorem 2.3. [6] The metric tensor fields of \mathbb{R} -complex Finsler space with (α, β) -metric are given by

$$g_{ij} = \rho_0 a_{ij} + \rho_{-2} l_i l_j + \mu_0 b_i b_j + \rho_{-1} (b_j l_i + b_i l_j),$$

$$g_{i\bar{j}} = \rho_0 a_{i\bar{j}} + \rho_{-2} l_i l_{\bar{j}} + \mu_0 b_i b_{\bar{j}} + \rho_{-1} (b_{\bar{j}} l_i + b_i l_{\bar{j}}),$$
(2.8)

where the quantities ρ_{-2} , ρ_{-1} , ρ_0 , ρ_1 , μ_0 are defined in the symbols of equations (2.6) and (2.7).

For obtaining the inverse and determinant of the tensor field g_{ij} , one can follow the following proposition:

Proposition 2.4. [5] Suppose

- (Q_{ij}) is a non-singular $n \times n$ complex matrix with inverse (Q^{ji}) ;
- C_i and $C_{\bar{i}} := \bar{C}_i, i = 1, ..., n$ are complex numbers;
- $C^i := Q^{ji}C_j$ and C_i are conjugates to each other; $C^2 := C^iC_i = \bar{C}^iC_i$; $H_{ij} := Q_{ij} \pm C_iC_j$.

Then

- i) $det(H_{ij}) = (1 \pm C^2) det(Q_{ij}),$
- ii) whenever $1 \pm C^2 \neq 0$, the matrix (H_{ij}) is invertible and its inverse is

$$H^{ji} = Q^{ji} \mp \frac{1}{1 + C^2} C^i C^j.$$

3. R-Complex Finsler Space with an Arctangent Metric

An \mathbb{R} -Complex Finsler spaces (M, F) is known as \mathbb{R} -Complex arctangent Finsler space if F satisfies the equation (2.2).

From the definition 2.1 (i), we have

$$L(\alpha, \beta) = \{\alpha + \epsilon \beta + \beta \ tan^{-1}(\beta/\alpha)\}^{2}. \tag{3.1}$$

From above equation, we get

$$L_{\alpha} = \frac{2\alpha^{2}}{\alpha^{2} + \beta^{2}} \{\alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha)\},$$

$$L_{\alpha\alpha} = \frac{2\alpha}{(\alpha^{2} + \beta^{2})^{2}} [2\beta^{3} \{\epsilon + \tan^{-1}(\beta/\alpha)\} + \alpha(\alpha^{2} + 2\beta^{2})],$$

$$L_{\alpha\beta} = \frac{2\alpha^{2}}{(\alpha^{2} + \beta^{2})^{2}} [(\alpha^{2} - \beta^{2}) \{\epsilon + \tan^{-1}(\beta/\alpha)\} - \beta \alpha],$$

$$L_{\beta} = \frac{2}{\alpha^{2} + \beta^{2}} \{\alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha)\} [(\alpha^{2} + \beta^{2}) \{\epsilon + \tan^{-1}(\beta/\alpha)\} + \beta \alpha],$$

$$L_{\beta\beta} = \frac{2}{(\alpha^{2} + \beta^{2})^{2}} [[(\alpha^{2} + \beta^{2}) \{\epsilon + \tan^{-1}(\beta/\alpha)\} + \beta \alpha]^{2} + 2\alpha^{3} \{\alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha)\}].$$
(3.2)

Substituting L_{α} , $L_{\alpha\alpha}$, L_{β} , $L_{\beta\beta}$, and $L_{\alpha\beta}$ from above in the system of equations (2.3), we get

$$\alpha L_{\alpha} + \beta L_{\beta} = 2 \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\}^{2} = 2L,$$

$$\alpha L_{\alpha\alpha} + \beta L_{\alpha\beta} = \frac{2\alpha^{2}}{\alpha^{2} + \beta^{2}} \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\} = L_{\alpha},$$

$$\alpha L_{\alpha\beta} + \beta L_{\beta\beta} = L_{\beta},$$

$$\alpha^{2} L_{\alpha\alpha} + 2\alpha\beta L_{\alpha\beta} + \beta^{2} L_{\beta\beta} = 2L.$$

$$(3.3)$$

In the same way, one can verify the rest equalities of the system of equations (2.3).

Proposition 3.1. The invariants of an \mathbb{R} -Complex Finsler space (M, F), where F is an arctangent metric, are given in the system of equations: Now, using the equations (2.6), (2.7), and (3.2), we get

$$\rho_{0} = \frac{\alpha}{\alpha^{2} + \beta^{2}} \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\},$$

$$\rho_{1} = \frac{1}{\alpha^{2} + \beta^{2}} \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\} \left[(\alpha^{2} + \beta^{2}) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} + \beta \alpha \right],$$

$$\rho_{-2} = \frac{-\beta}{2 \alpha (\alpha^{2} + \beta^{2})^{2}} \left[(\alpha^{2} - \beta^{2}) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} - \beta \alpha \right],$$

$$\rho_{-1} = \frac{\alpha}{2 (\alpha^{2} + \beta^{2})^{2}} \left[(\alpha^{2} - \beta^{2}) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} - \beta \alpha \right],$$

$$\mu_{0} = \frac{1}{2 (\alpha^{2} + \beta^{2})^{2}} \left[\left[(\alpha^{2} + \beta^{2}) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} + \beta \alpha \right]^{2} + 2\alpha^{3} \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\} \right].$$

$$(3.5)$$

Theorem 3.2. The metric tensor fields of an \mathbb{R} -Complex Finsler space (M, F), where F is an arctangent metric, are given in equations: Now, using the invariants given in equation (3.5) and theorem 2.3, we get

$$g_{ij} = \frac{\alpha}{\alpha^2 + \beta^2} \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\} a_{ij}$$

$$+ \frac{-\beta}{2 \alpha (\alpha^2 + \beta^2)^2} \left[(\alpha^2 - \beta^2) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} - \beta \alpha \right] l_i l_j$$

$$+ \frac{1}{2 (\alpha^2 + \beta^2)^2} \left[\left[(\alpha^2 + \beta^2) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} + \beta \alpha \right]^2 \right]$$

$$+ 2\alpha^3 \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\} b_i b_j$$

$$+ \frac{\alpha}{2 (\alpha^2 + \beta^2)^2} \left[(\alpha^2 - \beta^2) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} - \beta \alpha \right] (b_j l_i + b_i l_j), \quad (3.6)$$

and

$$g_{i\bar{j}} = \frac{\alpha}{\alpha^2 + \beta^2} \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\} a_{i\bar{j}}$$

$$- \frac{\beta}{2 \alpha (\alpha^2 + \beta^2)^2} \left[(\alpha^2 - \beta^2) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} - \beta \alpha \right] l_i l_{\bar{j}}$$

$$+ \frac{1}{2 (\alpha^2 + \beta^2)^2} \left[\left[(\alpha^2 + \beta^2) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} + \beta \alpha \right]^2 \right]$$

$$+ 2\alpha^3 \left\{ \alpha + \epsilon \beta + \beta \tan^{-1}(\beta/\alpha) \right\} b_i b_{\bar{j}}$$

$$+ \frac{\alpha}{2 (\alpha^2 + \beta^2)^2} \left[(\alpha^2 - \beta^2) \left\{ \epsilon + \tan^{-1}(\beta/\alpha) \right\} - \beta \alpha \right] \left(b_{\bar{j}} l_i + b_i l_{\bar{j}} \right). \tag{3.7}$$

Or

the equations (3.6) and (3.7) can be written in the following equivalent forms:

$$g_{ij} = \rho_0(a_{ij} - t_1 l_i l_j + t_2 b_i b_j + t_3 \eta_i \eta_j), \tag{3.8}$$

$$g_{i\bar{j}} = \rho_0 (a_{i\bar{j}} - t_1 l_i l_{\bar{j}} + t_2 b_i b_{\bar{j}} + t_3 \eta_i \eta_{\bar{j}}), \tag{3.9}$$

where

$$t_{1} = \frac{[(\alpha^{2} - \beta^{2})\{\epsilon + tan^{-1}(\beta/\alpha)\} - \beta \alpha]}{2\alpha^{2}(\alpha^{2} + \beta^{2})[(\alpha^{2} + \beta^{2})\{\epsilon + tan^{-1}(\beta/\alpha)\} + \beta \alpha]},$$

$$t_{2} = \frac{\{\alpha + \epsilon\beta + \beta tan^{-1}(\beta/\alpha)\}}{\alpha},$$

$$t_{3} = \frac{(\alpha^{2} + \beta^{2})[(\alpha^{2} - \beta^{2})\{\epsilon + tan^{-1}(\beta/\alpha)\} - \beta \alpha]}{2\alpha\{\alpha + \epsilon\beta + \beta tan^{-1}(\beta/\alpha)\}^{3}[(\alpha^{2} + \beta^{2})\{\epsilon + tan^{-1}(\beta/\alpha)\} + \beta \alpha]}.$$
 (3.10)

Proof. Using the relations (3.5) in theorem 2.3 by direct calculations, we obtain the results.

4. Non-Hermitian \mathbb{R} -Complex Finsler Space with an Arctangent Metric

In this section, we deal with the non-Hermitian \mathbb{R} -Complex Finsler space with an arctangent metric given in equation (1.1).

For the non-Hermitian \mathbb{R} -Complex Finsler space $(a_{i\bar{j}}=0)$, we use the following abbreviations:

$$l_{i} = a_{ij}\eta^{j}, \gamma = a_{jk}\eta^{j}\eta^{k} = l_{k}\eta^{k}, \ \theta = b_{j}\eta^{j}, \ \omega = b_{j}b^{j},$$

$$b^{k} = a^{jk}b_{j}, \ b_{l} = b^{k}a_{kl}, \delta = a_{jk}\eta^{j}b^{k} = l_{k}b^{k}, \ l^{j} = a^{ji}l_{i} = \eta^{j}.$$
 (4.1)

Theorem 4.1. For a non-Hermitian \mathbb{R} -Complex Finsler space (M, F), where F is an arctangent metric, we have

i) the contravariant tensor g^{ji} which is given in equation

$$g^{ji} = \frac{1}{\rho_0} \left[a^{ji} + \left\{ \frac{t_1}{\tau_1} - \frac{\theta^2 t_1^2 t_2}{\tau_1^2 \tau^2} \right\} \eta^i \eta^j - \frac{t_2 b^i b^j}{\tau_2} - \frac{\theta t_1 t_2 (b^i \eta^j + b^j \eta^i)}{\tau_1 \tau_2} \right. \\ \left. - \frac{A^2 \eta^i \eta^j + AB(b^i \eta^j + b^j \eta^i) + B^2 b^i b^j}{\tau_3} \right]. \tag{4.2}$$

ii) The $det(g_{ij})$ which is given in equation

$$det(g_{ij}) = (\rho_0)^n \tau_1 \tau_2 \tau_3 det(a_{ij}), \tag{4.3}$$

where ρ_0, t_1 and t_2 are given in equations (3.5) and (3.10), rest terms are

$$A = \left\{ 1 + \frac{t_1}{\tau_1} - \frac{\theta^2 t_1^2 t_2}{(\tau_1)^2 \tau_2} \right\} \gamma - \frac{\theta t_1 t_2}{(\tau_1)^3 \tau_2},$$

$$B = -\frac{t_2 \theta}{\tau_2} - \frac{\theta t_1 t_2 \gamma}{\tau_1 \tau_2},$$

$$\tau_1 = 1 - t_1 \gamma,$$

$$\tau_2 = 1 + t_2 \left(\omega + \frac{t_1 \theta^2}{\tau_1} \right),$$

$$\tau_3 = 1 + (A\gamma + B\theta) \sqrt{t_3}.$$
(4.4)

Proof. Now, apply proposition 2.4 to g_{ij} in equation (3.8) and follow the steps: **Step 1.**[Suppose $Q_{ij} = a_{ij}$ and $C_i = \sqrt{t_1}l_i$]

From our assumption, we get

$$Q^{ji} = a^{ji}$$

and

$$C^2 = C_i C^i = \sqrt{t_1} l_i \times Q^{ji} \times C_i = \sqrt{t_1} l_i \times a^{ji} \times \sqrt{t_1} l_i = t_1 \times l_i a^{ji} l_i = t_1 \gamma.$$

By applying proposition 2.4, we get

$$det(H_{ij}) = det(a_{ij} - t_1 l_i l_j) = (1 - t_1 \gamma) det(a_{ij}) = \tau_1 det(a_{ij}), \tag{4.5}$$

and, for $\tau_1 = 1 - t_1 \gamma \neq 0$, $(H_{ij}) = (a_{ij} - t_1 l_i l_j)$ is invertible and its inverse is given by:

$$H^{ji} = a^{ji} + \frac{t_1 \eta^i \eta^j}{\tau_1}. (4.6)$$

Step 2.[Suppose $Q_{ij} = a_{ij} - t_1 l_i l_j$ and $C_i = \sqrt{t_2} b_i$] Using the equations (4.1), (4.6), and our supposition, we get

$$Q^{ji} = a^{ji} + \frac{t_1 \eta^i \eta^j}{\tau_1}.$$

Using the previous equation, we get

$$C^{i} = Q^{ji}C_{j} = \left(a^{ji} + \frac{t_{1}\eta^{i}\eta^{j}}{\tau_{1}}\right)\sqrt{t_{2}}b_{j}$$
$$= \left(b^{i} + \frac{t_{1}\theta\eta^{i}}{\tau_{1}}\right)\sqrt{t_{2}},$$

which implies

$$C^2 = t_2 \left(\omega + \frac{t_1 \theta^2}{\tau_1} \right),$$

and

$$1 + C^2 = 1 + t_2 \left(\omega + \frac{t_1 \theta^2}{\tau_1}\right) = \tau_2(say).$$

Now, by applying proposition 2.4, we get

$$det(H_{ij}) = det(a_{ij} - t_1 l_i l_j + t_2 b_i b_j) = \tau_1 \tau_2 det(a_{ij}), \tag{4.7}$$

and, for τ_2 and $\tau_1 \neq 0$, the inverse of $(H_{ij}) = (a_{ij} - t_1 l_i l_j + t_2 b_i b_j)$ exists and it is

$$H^{ji} = a^{ji} + \left\{ \frac{t_1}{\tau_1} - \frac{\theta^2 t_1^2 t_2}{(\tau_1)^2 \tau_2} \right\} \eta^i \eta^j - \frac{t_2 b^i b^j}{\tau_2} + \frac{\theta t_1 t_2 (b^i \eta^j + b^j \eta^i)}{\tau_1 \tau_2}.$$
(4.8)

Step 3. [Suppose $Q_{ij} = a_{ij} - t_1 l_i l_j + t_2 b_i b_j$ and $C_i = \sqrt{t_3} \eta_i$] Using the equation (4.8) and our supposition, we get

$$Q^{ji} = a^{ji} + \left\{ \frac{t_1}{\tau_1} - \frac{\theta^2 t_1^2 t_2}{(\tau_1)^2 \tau_2} \right\} \eta^i \eta^j - \frac{t_2 b^i b^j}{\tau_2} + \frac{\theta t_1 t_2 (b^i \eta^j + b^j \eta^i)}{\tau_1 \tau_2}.$$

Using the previous equation, we get

$$C^i = A\eta^i + Bb^i,$$

where

$$A = \left\{ 1 + \frac{t_1}{\tau_1} - \frac{\theta^2 t_1^2 t_2}{(\tau_1)^2 \tau_2} \right\} \gamma - \frac{\theta t_1 t_2}{(\tau_1)^3 \tau_2},$$

$$B = -\frac{t_2 \theta}{\tau_2} - \frac{\theta t_1 t_2 \gamma}{\tau_1 \tau_2},$$
(4.9)

which implies

$$C^2 = Q^{ji}C_j = (A\gamma + B\theta)\sqrt{t_3}, \ 1 + C^2 = 1 + (A\gamma + B\theta)\sqrt{t_3} = \tau_3(say),$$

and

$$C^iC^j = A^2\eta^i\eta^j + AB(b^i\eta^j + b^j\eta^i) + B^2b^ib^j.$$

Now, by using proposition 2.4, we get

$$det(H_{ij}) = det(a_{ij} - t_1 l_i l_j + t_2 b_i b_j + t_3 \eta_i \eta_j) = \tau_1 \tau_2 \tau_3 det(a_{ij}),$$
(4.10)

and for non-zero τ_i (i = 1, 2, 3,), the inverse of $(H_{ij}) = (a_{ij} - t_1 l_i l_j + t_2 b_i b_j + t_3 \eta_i \eta_i)$ exists and it is

$$H^{ji} = a^{ji} + \left\{ \frac{t_1}{\tau_1} - \frac{\theta^2 t_1^2 t_2}{\tau_1^2 \tau^2} \right\} \eta^i \eta^j - \frac{t_2 b^i b^j}{\tau_2} - \frac{\theta t_1 t_2 (b^i \eta^j + b^j \eta^i)}{\tau_1 \tau_2} - \frac{A^2 \eta^i \eta^j + AB(b^i \eta^j + b^j \eta^i) + B^2 b^i b^j}{\tau_3}.$$
(4.11)

But $g_{ij} = \rho_0 H_{ij}$, where H_{ij} is given in the previous equation. Thus,

$$g^{ji} = \frac{1}{\rho_0} H^{ji}$$

and

$$det(g_{ij}) = (\rho_0)^n det(H_{ij}).$$

Using the equations (4.10) and (4.11), we get

$$g^{ji} = \frac{1}{\rho_0} \left[a^{ji} + \left\{ \frac{t_1}{\tau_1} - \frac{\theta^2 t_1^2 t_2}{\tau_1^2 \tau^2} \right\} \eta^i \eta^j - \frac{t_2 b^i b^j}{\tau_2} - \frac{\theta t_1 t_2 (b^i \eta^j + b^j \eta^i)}{\tau_1 \tau_2} - \frac{A^2 \eta^i \eta^j + AB(b^i \eta^j + b^j \eta^i) + B^2 b^i b^j}{\tau_3} \right], \tag{4.12}$$

and

$$det(g_{ij}) = (\rho_0)^n \tau_1 \tau_2 \tau_3 det(a_{ij}). \tag{4.13}$$

Hence the statement holds.

Now, in a non-Hermitian \mathbb{R} -Complex Finsler space (M, F), where F is an arctangent metric, we have the following properties:

$$\gamma + \bar{\gamma} = l_i \eta^i + l_{\bar{j}} \eta^{\bar{j}} = a_{ij} \eta^j \eta^i + a_{\bar{j}\bar{k}} \eta^{\bar{k}} \eta^{\bar{j}} = 2\alpha^2, \tag{4.14}$$

$$\theta + \bar{\theta} = b_j \eta^j + b_{\bar{j}} \eta^{\bar{j}} = 2\beta, \ \delta = \theta. \tag{4.15}$$

Proposition 4.2. Let us consider a non-Hermitian \mathbb{R} -Complex Finsler space (M, F), where F is an arctangent metric. This space satisfies the properties given in equations (4.14) and (4.15).

REFERENCES

- M. Abate and G. Patrizio, Finsler Metrics A Global Approach, Lecture Notes in Math. (1951), Springer-Verlag, Berlin, 1994.
- 2. M. Abate and G. Patrizio, On some classes of \mathbb{R} -complex Hermitian Finsler spaces, manuscript, 2013 edition, 1994.
- T. Aikou, Projective flatness of complex Finsler metrics, Publ. Math. Debrecen. 63(2003), 343–362.
- N. Aldea, About a special class of two dimensional Finsler spaces, Indian J. Pure Appl. Math. 43(2)(2012), 107–127.

- N. Aldea and G. Munteanu, On complex Finsler spaces with Randers metric, J. Korean Math. Soc. 46(5)(2009), 949–966.
- 6. N. Aldea and M. Purcaru, \mathbb{R} -complex Finsler spaces with (α, β) -metric, Novi Sad J. Math. 38(1)(2008), 1–9.
- 7. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, *The theory of sprays and Finsler spaces with applications in Physics and Biology*, Springer-Dordrecht, 2013.
- 8. G. Campean and G. Munteanu, \mathbb{R} -complex hermitian (α, β) -metrics, Bull. Transilvania. Univ. Brasov. **56**(2)(2014), 15–28.
- M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992), 43–83.
- G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Springer-Dordrecht, 2004.
- 11. G. Munteanu and M. Purcaru, On R-complex Finsler spaces, Balkan J. Geom. Appl. $\mathbf{14}(1)(2009),\ 52-59.$
- M. Purcaru, On R-complex Finsler spaces with Kropina metric, Bull. Transilvania .Univ. Brasov. 53(4)(2011), 79–88.
- 13. G. D. Rizza, Structure dii Finsler di tippo quasi Hermitiano, Riv. Mat. Univ. Parma 4(1963), 83–106.
- 14. V. S. Sabãu and H. Shimada, Remarkable classes of (α, β) -metric spaces, Rep. on Math. Phys. 47(1)(2001), 31-48.
- 15. G. Shanker and R. S. Kushwaha, Nonholonomic frame for Finsler spaces with a special quartic metric, Indian J. pure appl. Math. 120(2)(2018), 283–290.

Received: 18.01.2022 Accepted: 01.06.2022