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Abstract. In this paper, we introduce two classes of stretch Finsler metrics.

A Finsler metric with vanishing stretch B̃-curvature (stretch H-curvature) is

called B̃-stretch (H-stretch) metric (respectively). The class of B̃-stretch (H-

stretch) metric contain the class of Berwald (weakly Berwald) metric (respec-

tively). First, we show that every complete B̃-stretch metric (H-stretch metric)

is a B̃-metric (H-metric). Then we prove that every compact Finsler mani-

fold with non-negative (non-positive) relatively isotropic stretch B̃-curvature

(stretch H-curvature) is B̃-metric (H-metric).

Keywords: stretch curvature, complete stretch metric, Berwald curvature,

H-curvature, relatively isotropic stretch curvature.

1. Introduction

Riemann hinted in a remark at generalized case of Riemannian metrics,

which later labeled Finsler metric and denoted by F [11]. Along the time lots

mathematicians aimed to adjust mathematical tools which were effective in

Riemannian geometry such as the theory of connections, Jacobi vector fields,

sectional curvature to a more general one. In 1918, Finsler devoted his Ph.D.

dissertation to clear the way to start that approach in the field of Finsler
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Geometry [6]. To describe the nature of Finsler geometry can be done by

investigating several quantities: the Cartan torsion C, the Berwald curvature

B, and the Landsberg curvature L, etc. These are said to be non-Riemannian

quantities because all of them vanish for the Riemannian case. (See [9], [13],

[14]).

Let (M,F ) be a Finsler manifold. The second and third order derivatives of[
1
2F

2
]
at y ∈ T M are called the fundamental tensor and the Cartan torsion,

respectively. The rate of change of the Cartan torsion along Finslerian geodesics

gives the Landsberg curvature L of F .

In 1924, Berwald defined the notion of stretch curvature as a generalization

of Landsberg curvature and denoted it by T [3]. In 1925, he published it in

the first of his main papers [4]. He showed that T = 0 if and only if the

length of a vector remains unchanged under the parallel displacement along in-

finitesimal parallelograms. In 1928, he formulated a number of Finsler metric

classes, including Landsberg metrics and stretch metrics [5]. Then, this cur-

vature investigated was by Shibata in [12] and Matsumoto in [8]. Matsumoto

denoted this curvature by Σy. Najafi and Tayebi in 2017 introduced a new

non-Riemannian quantity named as mean stretch curvature by taking trace

with respect to gy in first and second variables of Σy [10]. A Finsler metric

has vanishing mean stretch curvature called a weakly stretch metric. Recently

many interesting results have been obtained in this direction. (See [15], [16],

[17], [18]).

Z. Shen introduced a non-Riemannian quantity B̃ which is obtained from the

Berwald curvatureB by the covariant horizontal differentiation along Finslerian

geodesics. For a vector y ∈ TpM , define B̃y : TpM × TpM × TpM → TpM by

B̃y(u, v, w) := B̃i
jkl(y)u

jvkwl ∂
∂xi |x, where

B̃i
jkl := Bi

jkl|mym.

The Finsler metric F is called B̃-metric if and only if B̃ = 0. B̃y is symmetric

in u, v, w ∈ TpM. (See [13], page 139).

In this paper, we use the Berwald curvature instead of the Cartan torsion,

and investigate the relationships among the classes obtained analogously to the

Landsberg and the stretch curvatures. This will enhance the understanding of

the role of the relevant tensors in characterizing the new classes of Finsler

metrics.

For a vector y ∈ TpM , we define Ky : TpM × TpM × TpM × TpM → TpM

by

Ky(u, v, w, z) := Ki
jklm(y)ujvkwlzm

∂

∂xi
|x,

where

Ki
jklm := 2

(
B̃i

jkl|m − B̃i
jkm|l

)
,
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and “ | ” is the horizontal derivation with respect to the Berwald connection

D of F . The family K := {Ky : y ∈ TpM} is called the stretch B̃-curvature.

A Finsler metric F is said to be B̃-stretch metric if and only if K = 0. Es-

pecially, every B̃-metric is a B̃-stretch metric. Therefore, on the contrary, it

is interesting to find some topological condition on the manifold M such that

every B̃-stretch metric on M reduces to a B̃-metric.

Let us introduce a non-trivial example, where |.| and ⟨, ⟩ denote the Eu-

clidean norm and the inner product in Rn, respectively.

Example 1.1. The Finsler function F

F (x, y) =

(√
|y|2 − (|x|2|y|2 − ⟨x, y⟩2) + ε⟨x, y⟩

)2

(1− |x|2)2
√
|y|2 − (|x|2|y|2 − ⟨x, y⟩2)

,

on the unit ball Bn is a B̃-stretch metric when n = 2 and n = 3. This can be

shown using the Finsler package and Maple program [20]. We guess it should

work in the general dimension but the calculation is very tedious and a bit

complicated.

Example 1.2. The Finsler metric F with the property that the Berwald cur-

vature satisfies Bi
jkl|m = Bi

jkm|l is B̃-stretch metric. Namely, in this case we

have B̃i
jkl|m =

[
Bi

jkl|sy
s
]
|m

=
[
Bi

jks|ly
s
]
|m

= 0, so we have K = 0.

We have the following inclusions:

{Berwald metric} ⊂
{
B̃-metric

}
⊂

{
B̃-stretch metric

}
.

The Finslerian quantity H was introduced by H. Akbar-Zadeh to char-

acterization of Finsler metrics of constant flag curvature which is obtained

from the mean Berwald curvature E by the covariant horizontal differentiation

along geodesics. For a vector y ∈ TpM , Hy : TpM × TpM → R is given by

Hy(u, v) := Hjk(y)u
jvk, where

Hjk := Ejk|ly
l.

The Finsler metric F is called H-metric if and only if H = 0 [1].

A non-Riemannian quantity is considered, namely stretch H-curvature which

is κ := {κy : y ∈ TpM}, where κy : TpM × TpM × TpM → R, by

κy(u, v, w) := κjkl(y)u
jvkwl,

where

κjkl := 2
(
Hjk|l −Hjl|k

)
.
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The Finsler metric F is called H-stretch metric if and only if κ = 0. We have

the following inclusion relations

{weakly Berwald metric} ⊂ {H-metric} ⊂ {H-stretch metric} .

In this paper, we prove the following theorems.

Theorem 1.3. Suppose that F is a positively complete B̃-stretch metric with

bounded Berwald torsion. Then F must be a B̃-metric and the Berwald torsion

is constant along any geodesic.

Theorem 1.4. Every complete H-stretch metric with bounded mean Berwald

torsion is H-metric.

Let (M,F ) be a Finsler manifold. Then F is called a relatively isotropic

stretch B̃-curvature if its stretch B̃-curvature is given by

K := λF
(
Bi

jkl|m −Bi
jkm|l

)
,

where λ := λ(x, y) is scalar function on TM . In this case, (M,F ) is called a

relatively isotropic B̃-stretch manifold. If λ ≥ 0 (λ ≤ 0, λ = constant), then F

is said to be non-negative (non-positive or constant) relatively isotropic stretch

B̃-curvature (respectively).

If the stretch H-curvature is given by

κ := λF
(
Ejk|l − Ejl|k

)
.

Then F is said to be non-negative (non-positive, constant) relatively isotropic

stretch H-curvature if we have λ ≥ 0 (λ ≤ 0, λ = constant) (respectively).

By Theorem 1.3 every complete B̃-stretch Finsler manifold with bounded

Berwald torsion is a B̃-manifold. Thus, a compact B̃-stretch Finsler manifold

reduces to a B̃-manifold. We generalize this result as follows.

Theorem 1.5. A compact Finsler manifold with non-negative (non-positive)

relatively isotropic stretch B̃-curvature is B̃-Finsler manifold. More precisely, a

complete Finsler manifold with constant relatively isotropic stretch B̃-curvature

and bounded B̃-curvature is B̃-metric.

By Theorem 1.4 every complete H-stretch Finsler manifold with bounded

mean Berwald torsion is a H-manifold. Thus, a compact H-stretch Finsler

manifold reduces to a H-manifold. We generalize this result as follows.

Theorem 1.6. Every compact Finsler manifold with non-positive (non-negative)

relatively isotropic stretch H-curvature is H-Finsler manifold. More precisely,

a complete Finsler metric with constant relatively isotropic stretch H-curvature

and bounded H-curvature is H-metric.
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2. Preliminaries

In this section, we will give a concise description of some quantities in Finsler

geometry.

Let M be an n-dimensional C∞ manifold, by TpM we denote the tangent

space at p ∈ M and by TM :=
∪

p∈M TpM we denote the tangent bundle

of M . Every element of TM is a pair (p, y) where p ∈ M and y ∈ TpM .

Denoted the slit tangent manifold by T M = TM \ {o}, where o denotes the

zero section of the tangent bundle. The natural projection π : TM → M is

given by π(p, y) := p. The pull-back tangent bundle π∗TM is a vector bundle

over T M whose fiber π∗
zTM = π−1(z) is isomorphic to Tπ(z)M , π(z) := p,

where T TM :=
∪

z∈T M

{
π−1(z) |z

}
, and

π−1(z) =
{
(p, y, z) | y ∈ T M, z ∈ TpM

}
.

A Finsler metric on a manifold M is a function F : TM → [0,∞) which has the

following properties: (i) F is C∞ mapping over T M , (ii) F (p, y) is positively

1-homogeneous y and (iii) the Hessian matrix gij(p, y) := Lyiyj is positive-

definite at each element of T M where L = 1
2 [F

2(p, y)]. Given a manifold M

and a Finsler structure F on M , the pair (M,F ) is called a Finsler manifold.

The following quadratic form gy : TpM × TpM → R is called the fundamental

tensor given by

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2 (y + su+ tv)

]
s=t=0

.

Let p ∈ M and Fp := F |TpM . To measure the non-Riemannian feature,

one can define a (0, 3)-tensor field on π∗TM denoted by C, where Cy : TpM ×
TpM × TpM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)]t=0.

The family C := {Cy}y∈T M is called Cartan torsion. The Finsler metric F is

Riemannian if and only if C = 0.

For a vector y ∈ T M , Iy : TpM → R is defined by

Iy(u) :=
n∑

i=1

Cy(ei, ej , u)g
ij(y),

where {ei}ni=1 is basis vectors for TpM at p ∈ M . The family I := {Iy}y∈T M

is called the mean Cartan torsion.

For a given n-dimensional Finsler manifold (M,F ) a spray G is a smooth

vector field induced by F on T M , which it a map G : T M → T (T M) and it

is a section of (TT M,νπ, T M), i.e. νπ ◦G = idT M .
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In a standard local coordinate system (xi, yi) for T M is given by

G = yi
∂

∂xi
− 2Gi(y)

∂

∂yi
,

where Gi(λy) = λ2Gi(y) for all λ > 0, and Gi are smooth at (0 ̸= y) ∈ T M , it

called spray coefficients of G, shown as below

Gi(y) =
1

4
gim(y)

{
yk[F 2]xkym − [F 2]xm

}
.

Assume the following conventions:

Gi
j :=

∂Gi

∂yj
, Gi

jk :=
∂Gi

j

∂yk
.

The local functions Gi
j are coefficients of a connection in the pullback tangent

bundle π∗TM which is called the Berwald connection denoted by D. The

derivatives of a vector field V and a 2-covariant tensor T = Tijdx
i ⊗ dxj is

given by:

V i
|m =

δV i

δxm
+ V sGi

sm, Vi|m =
δV i

δxm
− VsG

s
im,

Tij|m =
δTij

δxm
− TsjG

s
im − TisG

s
mj ,

where δ
δxm := ∂

∂xm −Gi
m

∂
∂yi .

A curve γ = γ(t) is a geodesic if and only if its coordinates (γi(t)) satisfy

γ̈i + 2Gi ◦ γ̇ = 0,

where γ̇ = γ̇i ∂
∂xi .

For a non-zero vector y ∈ TpM , let us defineBy : TpM×TpM×TpM → TpM

by By(u, v, w) := Bi
jkl(y)u

jvkwl ∂
∂xi |x where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

We have a (0, 2)-tensor, which is Ey : TpM × TpM → R by Ey(u, v) :=

Ejk(y)u
jvk, where

Ejk :=
1

2
Bm

jkm.

The quantities B and E are non-Riemannian quantities called the Berwald

curvature and mean Berwald curvature [4], respectively. A Finsler metric F is

said to be Berwald metric if B = 0, while if E = 0, it called weakly Berwald

metric.

There are some important classes of Finsler metrics containing the class of

Berwald metrics. For y ∈ TpM , define the Landsberg curvature Ly : TpM ×
TpM × TpM → R and mean Landsberg curvature Jy : TpM → R by

Ly(u, v, w) := −1

2
gy(By(u, v, w), y), Jy(u) :=

n∑
i,j=1

Ly(ei, ej , u)g
ij(y).



92 Sameer Annon Abbas and Lszl Kozma

In the local coordinates (xi, yi)

Ly(u, v, w) := Lijku
ivjwk, Jy(u) := Ji(y)u

i,

where

Lijk := −1

2
ymgml(y)B

l
ijk, Ji := gjkCijk.

Note that Ly(u, v, w) is symmetric in u, v and w and Ly(y, v, w) = 0. A Finsler

metric F is called a Landsberg metric (weakly Landsberg metric) if Ly = 0

(Jy = 0). respectively.

It is easy that every Berwald metric is a Landsberg metric.

For y ∈ TpM , the stretch curvature Σy : TpM × TpM × TpM × TpM → R is

given by Σy(u, v, w, z) := Σijklu
ivjwkzl, where

Σijkl := 2
(
Lijk|l − Lijl|k

)
.

A Finsler metric is said to be a stretch metric if and only if Σ = 0. Obviously,

every B̃-stretch metric is a stretch metric.

We have the following relation

{Berwald metrics} ⊆ {Landsberg metrics} ⊆ {Stretch metrics} .

3. Proof of Theorem 1.3

In this section, we are going to prove Theorem 1.3. We need the following

Proposition 3.1. Let (M,F ) be a Finsler manifold. Suppose that F is B̃-

stretch metric and γ = γ(t) is a geodesic. Put B(t) := Bγ̇(U(t), V (t),W (t)),

where U(t), V (t) and W (t) are the parallel vector fields along γ. Then, the

following equation holds:

B(t) = B̃(0)t+B(0). (3.1)

Proof. Let p be an arbitrary point of M , y, u, v, w ∈ TpM and γ : (−∞,∞) →
M be the unit speed geodesic passing from p and dγ

dt (0) = y. For U(t), V (t) and

W (t) are the parallel vector fields along γ with U(0) = u, V (0) = v,W (0) = w

we put

B̃(t) := B̃γ̇(U(t), V (t),W (t)).

By definition of B̃-curvature, we have

B̃(t) = B′(t). (3.2)

Let

B̃
′
(t) := B̃

′
γ̇(U(t), V (t),W (t)).

Since F is B̃-stretch metric, then we have

B̃
′
(t) = 0.

Which implies that B̃(t) = B̃(0). By (3.2), the proof is complete. □
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Now let us begin to prove Theorem 1.3.

Proof of Theorem 1.3: For an arbitrary unit vector y ∈ TpM and an arbi-

trary vector v ∈ TpM , let γ = γ(t) be the geodesic with γ̇(0) = y, and V (t) be

the parallel vector field along γ with V (0) = v.

Then by Proposition 3.1 we get

B(t) = B̃(0)t+B(0).

Suppose that Berwald torsion is bounded at x ∈ M , i.e.

∥B∥x := sup
y∈T M

 sup
v∈TpM

By(v)[
gy(v, v)

] 3
2

 < ∞.

By Lemma 7.3.2 in [13] we get that

W := gγ̇(t)(V (t), V (t))

is a positive constant. Thus

|B(t)| ≤ W
3
2 ∥B∥ < ∞,

Let us put t → +∞. Then, we get

B̃y(v) = B̃(0) = 0.

Therefore B̃ = 0. This completes the proof. □

It is clear that every Finsler metric with vanishing B̃-curvature has vanishing

H-curvature, that means, every B̃-metric is a H-metric. By Theorem 1.3 a B̃-

stretch Finsler metric reduces to a B̃-metric. Then, we get the following

Corollary 3.2. Let (M,F ) be a Finsler manifold. Then, every B̃-stretch met-

ric is a H-metric.

Proposition 3.3. Let (M,F ) be a Landsberg space with vanishing Riemannian

curvature, then it is a B̃-stretch space.

Proof. Since (M,F ) is Landsberg space then the horizontal covariant deriva-

tives of Berwald and Cartan connections coincide, i.e.

Gh
ij = Γh

ij .

We have

gjk|h = 0. (3.3)

Differentiating (3.3) with respect to yl, we get

2Cjkl|h −
(
Br

hklgrj +Br
hjlgrk +Br

jhkgrl
)
+Bhjkl,

where Bh
ijk =

∂Gh
ij

∂yk .
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We have the property that the tensor Br
hjlgrk = Bkhjl is totally symmetric.

Then we get

Cjkl|h = Bjkhl.

Equivalently

Ch
jk|l = Bh

jkl.

Now, we have

B̃h
jkl = Bh

jkl|mym = Ch
jk|l|mym.

Since R = 0, Ch
jk|l|m = Ch

jk|m|l holds, so

B̃h
jkl = Ch

jk|m|ly
m = 0,

taking into account Ch
jk|mym = 0. Therefore, we obtain K = 0. □

4. Proof of Theorem 1.4

To prove Theorem 1.4, we need the following

Proposition 4.1. Let (M,F ) be a Finsler manifold. Suppose that F is H-

stretch metric. Then, for any geodesic γ = γ(t) and any parallel vector field

V = V (t) along γ, the function E(t) := Eγ̇(V (t)) must be in the following

form:

E(t) = H(0)t+E(0).

Proof. Let γ : [0,+∞] → M be the geodesic parameterized by the arc length

on M with the start point γ(0) = p and the tangent vector γ̇(0) = y. Suppose

that U = U(t), V = V (t) are two parallel vector fields along γ = γ(t) with

U(0) = u, V (0) = v.

Since F is H-stretch metric, then we get κ = 0, that means

Hjk|l = Hjl|k. (4.1)

Contracting (4.1) with yl, we have

Hjk|ly
l = 0.

Let

H(t) := Hγ̇(U(t), V (t)) = Hjk(γ(t), γ̇(t))U
j(t)V k(t). (4.2)

We have H(t) = E′(t), by (4.2)

E′′(t) = H′(t) = Hjk|lγ̇
l(t)(γ(t), γ̇(t))U j(t)V k(t) = 0.

Thus yields E(t) = H(0)t+E(0). □

Let us start to prove Theorem 1.4.

Proof of Theorem 1.4: Let (M,F ) be complete Finsler manifold. Suppose

that F is H-stretch metric. Take an arbitrary unit vector y ∈ TpM and an

arbitrary vector v ∈ TpM . Let γ = γ(t) be the geodesic with γ(0) = p and
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γ̇(0) = y, and W (t) be the parallel vector field along γ with W (0) = w. Then

by Proposition 4.1, we get

E(t) = H(0)t+E(0). (4.3)

Suppose that Ey is bounded, i.e. there is a constant A < ∞ such that

∥E∥x := sup
y∈T pM

 sup
v∈TpM

Ey(w)[
gy(w,w)

] 3
2

 ≤ A.

By Lemma 7.3.2 in [13], we have

|E(t)| ≤ AQ
3
2 < ∞,

for some constant Q. Therefore E(t) is a bounded function on (−∞,∞). Let-

ting t → ∞ in (4.3), it implies that Hy(v) = H(0) = 0. □

By Theorem 1.4, a H-stretch metric reduces to a H-metric. Tayebi et al.

in [16] proved that any H-metric is a B̃-metric for a Finsler surface (M,F ).

Then, we get the following corollary.

Corollary 4.2. Let (M,F ) be a Finsler surface. Then F is a H-stretch metric

if and only if it is B̃-metric.

5. Proof of Theorem 1.5

In this section, we will prove Theorem 1.5. We need the following results:

Theorem 5.1. [7] Suppose M is a compact, oriented manifold with a volume

element ω . Then for every vector field X over M , we have
∫
M
(divX)ω = 0.

Theorem 5.2. [7] Suppose M is an oriented manifold with the volume form ω

and ∇ is a torsion-free connection where ∇ω = 0. Then for every vector field

X over M , y ∈ TpM with x ∈ M we have (divX)x = −trace(Y → ∇Y X) =

∇iX
i.

Let us begin to prove Theorem 1.5.

Proof of Theorem 1.5: Let p ∈ M , and y, u, v, w ∈ TpM , and γ : (−∞,∞) →
M is the geodesic with γ(0) = p and dγ

dt (0) = y and U(t), V (t) and W (t) are

parallel vector fields along γ such that U(0) = u, V (0) = v,W (0) = w.

We put

B̃(t) = B̃γ̇((U(t), V (t),W (t)).

B̃
′
(t) = B̃

′
γ̇((U(t), V (t),W (t)).

However, the Finsler manifold (M,F ) has non-negative (non-positive, respec-

tively) relatively isotropic stretch B̃-curvature or is constant. By the definition

and multiplying by yl, it is simple to get:

B̃i
jkm|ly

l = λFB̃i
jkm, (5.1)
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where λ := λ(x, y) is a non-negative (non-positive, respectively) or constant

homogeneous function over T M .

First suppose λ := λ(x, y) is a non-negative (non-positive, respectively)

function over T M .

By putting

Γ(x, y) := B̃r
szmq B̃

szmq
r ,

we have

Γ̇(x, y) = Γ|ny
n

= λFB̃r
szmqB̃

szmq
r + B̃r

szmqλB̃
szmq
r

= 2λFΓ. (5.2)

As F and Γ have positive values, if λ is non-negative (non-positive), then Γ̇

is non-negative (non-positive).

By Theorem 5.2 we get

Γ̇(x, y) = Γ|ny
n = µ(Γ) = Div(Γµ).

Note that δ = yi δ
δxi is a geodesic vector field on unit sphere tangent bundle

SM and Div(µ) = 0 [19].

Because M is compact, SM is also compact. The value form ωSM over SM

is obtained from the volume form ω on M [2]. According to Theorem 5.1 we

get, ∫
SM

Γ̇ωSM = 0.

Since Γ̇ is homogeneous function and its non-negative (non-positive) sign, then

Γ̇ = 0.

By equation (5.2), we get Γ = 0 or λ = 0. If Γ = 0, then B̃ = 0. If λ = 0,

then K = 0.

In this case

B̃
′
= B̃i

jkm|ly
l = 0.

Thus

B̃(t) = B̃(0).

So Berwald torsion is equal to

B̃(t) = B̃(0)t+B(0).

Letting t → ∓∞ and using ∥B∥ < ∞, we get B̃(0) = 0. Thus

B̃(t) = 0.

Now, if λ = constant, the general answer to equation (5.1) is as follows:

B̃(t) = etλB̃(0).

Using ∥B∥ < ∞ and letting t → ∓∞, this implies that

B̃(t) = B̃(0) = 0.
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Thus, the second part of Theorem 1.5 is also proved. □

Corollary 5.3. Let (M,F ) be Finsler manifold. Then, every non-negative

(non-positive) relatively isotropic stretch B̃-curvature is a H-metric.

6. Proof of Theorem 1.6

In this section, we are going to prove Theorem 1.6.

Proof of Theorem 1.6: Let p ∈ M and y, u, v ∈ TpM . Let γ : (−∞,∞) → M

be the unit speed geodesic such that γ(0) = p, γ̇(0) = y. Suppose U =

U(t), V = V (t) are the parallel vector fields along γ with U(0) = u, V (0) = v.

Put

H(t) = H(U(t), V (t)),

H′(t) = H′(U(t), V (t)).

By assumption, F has non-positive (non-negative) relatively isotropic stretch

H-curvature. Then

Hjk|l −Hjl|k = λF
(
Ejk|l − Ejl|k

)
, (6.1)

where λ := λ(x, y) is a non-positive (non-negative) or constant function on

TM .

Contraction (6.1) with yk implies that

Hjl|ky
k = λFEjl|ky

k,

since Hjl = Ejl|ky
k. Thus we get

Hjl|ky
k = λFHjl.

First let λ := λ(x, y) be a non-negative scalar function on TM . Put

ϕ := HznHzn.

Then we have

ϕ′ = 2λFϕ.

By definition, F and ϕ have positive value. If λ is non-negative (non-positive),

then ϕ′ is non-negative (non-positive). By Theorem 5.2, we get

ϕ′ = ϕ|mym = ζ(ϕ) = Div(ϕζ),

where ζ = yi δ
δxi is a geodesic vector field on the unit sphere tangent bundle

SM and Div(ζ) = 0. By Theorem 5.1, we get∫
SM

ϕ′ωSM = 0.

Thus the volume form ωSM on SM is obtained from volume form ω onM . Since

ϕ′ is homogeneous function, and its sign is negative (positive), then ϕ′ = 0, and
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we have ϕ = 0 or λ = 0. If ϕ = 0, then H = 0. If λ = 0, then κ = 0. In this

case

H′ = Ejl|ky
k = 0.

Thus H(t) = H(0), which implies that

H(t) = tH(t) +E(0).

Letting t → ∓∞, and using ∥E∥ < ∞, we get H(0) = 0. Thus

H(t) = 0.

Now, suppose λ = constant, then the general answer of (6.1) is as follows

H(t) = H(0)exp(tλ).

Using ∥E∥ < ∞ and letting t → ±∞ this implies that H(0) = 0, thus

H(t) = 0.

This completes the proof. □

Corollary 6.1. Let (M,F ) be Finsler surface. Then, every non-negative (non-

positive) relatively isotropic stretch H-curvature is a B̃-metric.
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