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Abstract. In this paper, we introduce two classes of stretch Finsler metrics.
A Finsler metric with vanishing stretch B-curvature (stretch H-curvature) is
called B-stretch (H-stretch) metric (respectively). The class of B-stretch (H-
stretch) metric contain the class of Berwald (weakly Berwald) metric (respec-
tively). First, we show that every complete B-stretch metric (H-stretch metric)
is a B-metric (H-metric). Then we prove that every compact Finsler mani-
fold with non-negative (non-positive) relatively isotropic stretch B-curvature

(stretch H-curvature) is B-metric (H-metric).
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1. Introduction

Riemann hinted in a remark at generalized case of Riemannian metrics,
which later labeled Finsler metric and denoted by F' [11]. Along the time lots
mathematicians aimed to adjust mathematical tools which were effective in
Riemannian geometry such as the theory of connections, Jacobi vector fields,
sectional curvature to a more general one. In 1918, Finsler devoted his Ph.D.
dissertation to clear the way to start that approach in the field of Finsler
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Geometry [6]. To describe the nature of Finsler geometry can be done by
investigating several quantities: the Cartan torsion C, the Berwald curvature
B, and the Landsberg curvature L, etc. These are said to be non-Riemannian
quantities because all of them vanish for the Riemannian case. (See [9], [13],
14]).

Let (M, F) be a Finsler manifold. The second and third order derivatives of
[%Fz] at y € TM are called the fundamental tensor and the Cartan torsion,
respectively. The rate of change of the Cartan torsion along Finslerian geodesics
gives the Landsberg curvature L of F.

In 1924, Berwald defined the notion of stretch curvature as a generalization
of Landsberg curvature and denoted it by T [3]. In 1925, he published it in
the first of his main papers [4]. He showed that T = 0 if and only if the
length of a vector remains unchanged under the parallel displacement along in-
finitesimal parallelograms. In 1928, he formulated a number of Finsler metric
classes, including Landsberg metrics and stretch metrics [5]. Then, this cur-
vature investigated was by Shibata in [12] and Matsumoto in [8]. Matsumoto
denoted this curvature by 3,. Najafi and Tayebi in 2017 introduced a new
non-Riemannian quantity named as mean stretch curvature by taking trace
with respect to g, in first and second variables of X, [10]. A Finsler metric
has vanishing mean stretch curvature called a weakly stretch metric. Recently
many interesting results have been obtained in this direction. (See [15], [16],
17, [18]). )

Z. Shen introduced a non-Riemannian quantity B which is obtained from the
Berwald curvature B by the covariant horizontal differentiation along Finslerian
geodesics. For a vector y € T,M, define Ey :ToM x TyM x T,M — T,M by

B, (u,v,w) == B]i-kl(y)ujvkwl 6%

«, where

i . 7 m
B = Bjrmy™

The Finsler metric F is called B-metric if and only if B=0. ]§y is symmetric
in u,v,w € T, M. (See [13], page 139).

In this paper, we use the Berwald curvature instead of the Cartan torsion,
and investigate the relationships among the classes obtained analogously to the
Landsberg and the stretch curvatures. This will enhance the understanding of
the role of the relevant tensors in characterizing the new classes of Finsler
metrics.

For a vector y € T,M, we define IC;, : T,M x T,M x T,M x TyM — T,M
by
0

k, l.m
“ or g

Ky(u,v,w,z2) := K;klm(y)ujv w

where

jklm 2 (B]kl\m - Bjkm\l) )



88 Sameer Annon Abbas and Lszl Kozma

and is the horizontal derivation with respect to the Berwald connection
D of F. The family K := {K, :y € T,M} is called the stretch B-curvature.
A Finsler metric F is said to be B-stretch metric if and only if I = 0. Es-
pecially, every B-metric is a B-stretch metric. Therefore, on the contrary, it
is interesting to find some topological condition on the manifold M such that

££|77

every B-stretch metric on M reduces to a B-metric.
Let us introduce a non-trivial example, where |.| and (,) denote the Eu-
clidean norm and the inner product in R™, respectively.

Example 1.1. The Finsler function F

(¢|y\2 TP ) +ele)
— (222l = (2Pl = (@,9)%)

on the unit ball B™ is a B-stretch metric when n =2 and n = 3. This can be
shown using the Finsler package and Maple program [20]. We guess it should
work in the general dimension but the calculation is very tedious and a bit

F(J,‘,y) =

complicated.

Example 1.2. The Finsler metric F' with the property that the Berwald cur-
vature satisfies B® Bi’kmll is B-stretch metric. Namely, in this case we

jkllm = j
have Bi

il = [Bjkl‘s = [B;ksuys} e 0, so we have IC = 0.

|m

We have the following inclusions:
{Berwald metric} C {ﬁ-metric} C {E—stretch metric} .

The Finslerian quantity H was introduced by H. Akbar-Zadeh to char-
acterization of Finsler metrics of constant flag curvature which is obtained
from the mean Berwald curvature E by the covariant horizontal differentiation
along geodesics. For a vector y € T,M, Hy : T,M x T,M — R is given by
H,(u,v) :== Hjj(y)u/v*, where

Hji, = Ejy.
The Finsler metric F is called H-metric if and only if H =0 [1].

A non-Riemannian quantity is considered, namely stretch H-curvature which
is k :={ky 1y € T,M}, where &, : T,M x T, M x T, M — R, by

Ky(u,v,w) = ,‘ijkl(y)ujv]’“wl7

where
wjre = 2 (Hjnp — Hjpg) -
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The Finsler metric F is called H-stretch metric if and only if K = 0. We have
the following inclusion relations

{weakly Berwald metric} C {H-metric} C {H-stretch metric}.

In this paper, we prove the following theorems.

Theorem 1.3. Suppose that F is a positively complete B-stretch metric with
bounded Berwald torsion. Then F must be a B-metric and the Berwald torsion
is constant along any geodesic.

Theorem 1.4. FEvery complete H-stretch metric with bounded mean Berwald
torsion is H-metric.

Let (M, F) be a Finsler manifold. Then F is called a relatively isotropic

stretch B-curvature if its stretch B-curvature is given by

IC:=AF (B]i'kl\m - B]i'km\l) )

where A := A(z,y) is scalar function on T'M. In this case, (M, F) is called a
relatively isotropic B-stretch manifold. If X > 0 (A < 0, A = constant), then F
is said to be non-negative (non-positive or constant) relatively isotropic stretch
B-curvature (respectively).

If the stretch H-curvature is given by
K= \F (Ejk}‘l — Ej”k?) .

Then F is said to be non-negative (non-positive, constant) relatively isotropic
stretch H-curvature if we have A > 0 (A < 0, A = constant) (respectively).

By Theorem 1.3 every complete B-stretch Finsler manifold with bounded
Berwald torsion is a B-manifold. Thus, a compact B-stretch Finsler manifold

reduces to a B-manifold. We generalize this result as follows.

Theorem 1.5. A compact Finsler manifold with non-negative (non-positive)
relatively isotropic stretch B-curvature is B-Finsler manifold. More precisely, a
complete Finsler manifold with constant relatively isotropic stretch B-curvature
and bounded B-curvature is B-metric.

By Theorem 1.4 every complete H-stretch Finsler manifold with bounded
mean Berwald torsion is a H-manifold. Thus, a compact H-stretch Finsler
manifold reduces to a H-manifold. We generalize this result as follows.

Theorem 1.6. Every compact Finsler manifold with non-positive (non-negative)
relatively isotropic stretch H-curvature is H-Finsler manifold. More precisely,
a complete Finsler metric with constant relatively isotropic stretch H-curvature
and bounded H-curvature is H-metric.
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2. Preliminaries

In this section, we will give a concise description of some quantities in Finsler
geometry.

Let M be an n-dimensional C'*° manifold, by T, M we denote the tangent
space at p € M and by TM := Upe um IpM we denote the tangent bundle
of M. Every element of TM is a pair (p,y) where p € M and y € T,M.
Denoted the slit tangent manifold by 7M = TM \ {o}, where o denotes the
zero section of the tangent bundle. The natural projection 7 : TM — M is
given by 7(p,y) := p. The pull-back tangent bundle 7*T M is a vector bundle
over TM whose fiber m3TM = 7~ !(2) is isomorphic to Ty )M, 7(z) := p,
where TTM :=J, ey {7 '(2) |2 }, and

W”@%zﬂn%@lyeTMxezyw}

A Finsler metric on a manifold M is a function F : TM — [0, 00) which has the
following properties: (i) F' is C°° mapping over TM, (ii) F(p,y) is positively
1-homogeneous y and (iii) the Hessian matrix g;;(p,y) := Ly, is positive-
definite at each element of 7M where £ = 1[F?(p,y)]. Given a manifold M
and a Finsler structure F on M, the pair (M, F) is called a Finsler manifold.
The following quadratic form g, : T,M x T,M — R is called the fundamental
tensor given by

(w.0)i= 22 (P2 ot su )|

U, V) = = su + tv .

&yt 2 0sot 4 s=t=0

Let p € M and F), := F |r,n. To measure the non-Riemannian feature,

one can define a (0, 3)-tensor field on 7*T'M denoted by C, where C,, : T, M x
T,M x T,M — R by
1d
Cy ('LL, v, 'LU) = 5 a [gy+tw (’U,, U)}t:o.
The family C := {C,}ye7 is called Cartan torsion. The Finsler metric F' is
Riemannian if and only if C = 0.
For a vector y € TM, I, :T,M — R is defined by

Iy(u) = Z Cy(eiv €j, u)g” (y)7
=1

where {e;}" is basis vectors for T,M at p € M. The family I := {I,},c7m
is called the mean Cartan torsion.

For a given n-dimensional Finsler manifold (M, F) a spray G is a smooth
vector field induced by F' on 7TM, which it a map G : TM — T(TM) and it
is a section of (T'TM,v,, TM), i.e. vz 0o G =idyp.
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In a standard local coordinate system (x?,y%) for 7M is given by

B .0
dxi 26') dy*’

where G*(\y) = A2G*(y) for all A > 0, and G? are smooth at (0 # y) € TM, it
called spray coefficients of G, shown as below

Gi(y) = 19 O{YF oy — [Fen )

G=y

4
Assume the following conventions:
; IG" , oG,
G =——, Gy = —I.
Ay T oyP

The local functions Gij are coeflicients of a connection in the pullback tangent
bundle 7*T'M which is called the Berwald connection denoted by D. The
derivatives of a vector field V' and a 2-covariant tensor 7' = T};dx’ ® dz7 is
given by:

, Vi o SV
Vi = —+V°Gy,,, Vim=———ViGj,,
mo ™ ox™
o755 s s
Tijim = Som Ts; G — TisGrnjs
where ﬁ = % — Gima%i.

A curve v = ~(t) is a geodesic if and only if its coordinates (v%(t)) satisfy
142G 04 =0,
where 4 = 4° a?c'i .
For a non-zero vector y € T,M, let us define By, : T, M xT, M xT,M — T, M

by By (u, v, w) := Bl (y)ulvFuw! o

- Where

Jkt - — ayjaykayl'
We have a (0,2)-tensor, which is E, : T,M x T,M — R by E,(u,v) :=
Eji(y)u/ vk, where

1
Ejpi= 5 Blion:

The quantities B and E are non-Riemannian quantities called the Berwald
curvature and mean Berwald curvature [4], respectively. A Finsler metric F is
said to be Berwald metric if B = 0, while if E = 0, it called weakly Berwald
metric.

There are some important classes of Finsler metrics containing the class of
Berwald metrics. For y € T,M, define the Landsberg curvature L, : T,M x
TpM x T,M — R and mean Landsberg curvature J, : T,M — R by

n

L, (u,v,w) := —%gy(By(u,v,w),y), Jy(u) == Z L, (ei, e5,u)g" (y).

i,j=1
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In the local coordinates (¢, %)
Ly(u,v,w) := Lijkuivjwk, J,(u) = J;(y)u',
where )
Liji == *iymgmz(y)le-jka Ji == g""Cijn.

Note that Ly (u, v, w) is symmetric in u, v and w and Ly (y, v, w) = 0. A Finsler
metric F' is called a Landsberg metric (weakly Landsberg metric) if L, = 0
(Jy = 0). respectively.

It is easy that every Berwald metric is a Landsberg metric.

For y € T,M, the stretch curvature 3 : T,M x TyM x T,M x T,M — R is

iven by X, (u, v, w, 2) := X;imuiviwk 2zt where
y Y s Yy By J )

Sijkt =2 (Lijrp — Lijux) -
A Finsler metric is said to be a stretch metric if and only if 3 = 0. Obviously,

every B-stretch metric is a stretch metric.
We have the following relation

{Berwald metrics} C {Landsberg metrics} C {Stretch metrics}.

3. Proof of Theorem 1.3
In this section, we are going to prove Theorem 1.3. We need the following

Proposition 3.1. Let (M, F) be a Finsler manifold. Suppose that F is B-
stretch metric and v = y(t) is a geodesic. Put B(t) := Bs(U(t),V(t), W(t)),
where U(t),V(t) and W(t) are the parallel vector fields along v. Then, the
following equation holds:

B(t) = B(0)t + B(0). (3.1)
Proof. Let p be an arbitrary point of M, y,u,v,w € T, M and 7 : (—o0,00) —
M be the unit speed geodesic passing from p and Z—Z(O) =y. For U(t), V(¢) and
W (t) are the parallel vector fields along v with U(0) = u, V(0) = v, W(0) = w
we put
B(t) :== B4 (U(t),V(t), W(t)).
By definition of ]~3—curvature, we have
B(t) = B'(t). (3.2)
Let
~1 ~
B'(1) = BL (W0, V(D). ().
Since F is B-stretch metric, then we have

B'(t) = 0.
Which implies that B(t) = B(0). By (3.2), the proof is complete. O
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Now let us begin to prove Theorem 1.3.

Proof of Theorem 1.3: For an arbitrary unit vector y € 1,M and an arbi-
trary vector v € T, M, let v = ~(t) be the geodesic with 4(0) =y, and V(¢) be
the parallel vector field along v with V(0) = v.

Then by Proposition 3.1 we get

B(t) = B(0)t + B(0).

Suppose that Berwald torsion is bounded at z € M, i.e.

IB|lz ;== sup | sup B, (v) 7| <oo.
yeTM |veT, M [gy(v,v)P
By Lemma 7.3.2 in [13] we get that

W= g5, (V(1), V(1))
is a positive constant. Thus

[B(1)] < W2||B| < oo,
Let us put t = +o00. Then, we get

B, (v) = B(0) = 0.

Therefore B = 0. This completes the proof. O

It is clear that every Finsler metric with vanishing B-curvature has vanishing
H-curvature, that means, every B-metric is a H-metric. By Theorem 1.3 a B-
stretch Finsler metric reduces to a B-metric. Then, we get the following

Corollary 3.2. Let (M, F) be a Finsler manifold. Then, every B-stretch met-
ric is a H-metric.

Proposition 3.3. Let (M, F') be a Landsberg space with vanishing Riemannian

curvature, then it is a B-stretch space.

Proof. Since (M, F) is Landsberg space then the horizontal covariant deriva-
tives of Berwald and Cartan connections coincide, i.e.

h _ Th
Gy =15
We have
Differentiating (3.3) with respect to y', we get
2Ck1n — (B;;kzgrj + Bhjigrk + B;hkgrl) + Bpjki,

agh.
no _ 909G
where Bij,~C = 55
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We have the property that the tensor By, 19rk = Brnji is totally symmetric.
Then we get
Cikijn = Bjkni-
Equivalently
h h
Cjku = Bjkl'
Now, we have
Bh _ Bh m o __ Ch m
ki = Pikm¥ = Yikpm¥Y -

: _ h _ h
Since R =0, Cjkmm = Cjk\mu holds, so

nh h
B = Clmpy™ =0,

taking into account C” 4™ = 0. Therefore, we obtain C = 0. O

jklm
4. Proof of Theorem 1.4
To prove Theorem 1.4, we need the following

Proposition 4.1. Let (M, F) be a Finsler manifold. Suppose that F is H-
stretch metric. Then, for any geodesic v = y(t) and any parallel vector field
V = V(t) along v, the function E(t) := E;(V(t)) must be in the following
form:

E(t) = H(0)t + E(0).

Proof. Let 7y : [0,4+00] = M be the geodesic parameterized by the arc length
on M with the start point v(0) = p and the tangent vector 4(0) = y. Suppose
that U = U(¢),V = V(t) are two parallel vector fields along v = ~(t) with
U0) =u,V(0) =w.

Since F' is H-stretch metric, then we get kK = 0, that means

Contracting (4.1) with 3!, we have
Hjpuy' = 0.
Let
H(t) := Hy (U(1), V() = Hj(v(1), 5(O)) U7 ()VE(1). (4.2)

We have H(t) = E'(t), by (4.2)
(1) = H'(t) = Hrd' () (7(1), 7)) U7 )V () = 0,
Thus yields E(¢) = H(0)t + E(0). O
Let us start to prove Theorem 1.4.
Proof of Theorem 1.4: Let (M, F') be complete Finsler manifold. Suppose

that F' is H-stretch metric. Take an arbitrary unit vector y € T, M and an
arbitrary vector v € T,M. Let v = 7(t) be the geodesic with v(0) = p and
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4(0) = y, and W (t) be the parallel vector field along v with W (0) = w. Then
by Proposition 4.1, we get
E(t) = H(0)t + E(0). (4.3)

Suppose that E, is bounded, i.e. there is a constant A < oo such that

< A.

E,(w
|E||. := sup sup ¢
yETpM | vETpM [gy(w,w)]

[N

By Lemma 7.3.2 in [13], we have
E(t)] < AQ? < o,

for some constant Q. Therefore E(t) is a bounded function on (—o0, 00). Let-
ting ¢t — oo in (4.3), it implies that H,(v) = H(0) = 0. O

By Theorem 1.4, a H-stretch metric reduces to a H-metric. Tayebi et al.
in [16] proved that any H-metric is a B-metric for a Finsler surface (M, F).
Then, we get the following corollary.

Corollary 4.2. Let (M, F) be a Finsler surface. Then F is a H-stretch metric
if and only if it is B-metric.

5. Proof of Theorem 1.5
In this section, we will prove Theorem 1.5. We need the following results:

Theorem 5.1. [7] Suppose M is a compact, oriented manifold with a volume
element w . Then for every vector field X over M, we have fM(divX)w =0.

Theorem 5.2. [7] Suppose M is an oriented manifold with the volume form w
and V is a torsion-free connection where V,, = 0. Then for every vector field
X over M, y € T,M with x € M we have (divX), = —trace(Y — VyX) =
VXt

Let us begin to prove Theorem 1.5.

Proof of Theorem 1.5: Let p € M, and y, u,v,w € T, M, and v : (—o0,00) —
M is the geodesic with v(0) = p and Z—;(O) =y and U(¢),V(¢t) and W (t) are
parallel vector fields along v such that U(0) = u, V(0) = v, W(0) = w.
We put

B(t) = B4 ((U(#), V(t), W(t)).

~/ ~1

B (t) = B, ((U(#), V (1), W(1)).
However, the Finsler manifold (M, F') has non-negative (non-positive, respec-
tively) relatively isotropic stretch B-curvature or is constant. By the definition
and multiplying by 3!, it is simple to get:

N;'kayl = )‘ngkm7 (5.1)
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where \ := A(z,y) is a non-negative (non-positive, respectively) or constant
homogeneous function over T M.

First suppose A := A(z,y) is a non-negative (non-positive, respectively)
function over T M.
By putting
F(l’, y) = B;zmq Bizmqv
we have
[(z,y) = Tjny"
= /\FB;zquﬁzmq + Bgzmq)‘vizmq
= 2)\FT. (5.2)

As F and T have positive values, if A is non-negative (non-positive), then I’
is non-negative (non-positive).
By Theorem 5.2 we get

f(.’L‘, y) = F\nyn = () = m(rﬂ)

Note that § = 3 5; is a geodesic vector field on unit sphere tangent bundle
SM and Div(u) =0 [19].
Because M is compact, SM is also compact. The value form wgy; over SM

is obtained from the volume form w on M [2]. According to Theorem 5.1 we

get,
/ waM =0.
SM

Since I" is homogeneous function and its non-negative (non-positive) sign, then
I=0.

By equation (5.2), we get ' =0 or A = 0. If I' = 0, then B=0.If \=0,
then IC = 0.

In this case

= D 1
Thus

So Berwald torsion is equal to
B(t) = B(0)t + B(0).
Letting ¢ — Foo and using ||B|| < oo, we get B(0) = 0. Thus
B(t) = 0.

Now, if A = constant, the general answer to equation (5.1) is as follows:

B(t) = ¢ B(0).
Using ||B|| < oo and letting ¢ — Foo, this implies that

B(t) = B(0) = 0.
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Thus, the second part of Theorem 1.5 is also proved. ([l

Corollary 5.3. Let (M, F) be Finsler manifold. Then, every non-negative
(non-positive) relatively isotropic stretch B-curvature is a H-metric.

6. Proof of Theorem 1.6

In this section, we are going to prove Theorem 1.6.

Proof of Theorem 1.6: Let p € M and y,u,v € T,M. Let vy : (—00,00) = M
be the unit speed geodesic such that v(0) = p, ¥(0) = y. Suppose U =
U(t),V = V(t) are the parallel vector fields along v with U(0) = u, V(0) = v.
Put

H(t) = HU(t), V(1)),

H'(t) = H'(U(t), V(1)).
By assumption, F' has non-positive (non-negative) relatively isotropic stretch
H-curvature. Then

Hjwi — Hj = AF (Ejien — Ejug) (6.1)

where A := A(z,y) is a non-positive (non-negative) or constant function on
TM.
Contraction (6.1) with y* implies that

Hjuy" = AFEj ey,
since Hj; = Ejxy*. Thus we get
Hjwy" = A\FHj,.

First let A := A(x,y) be a non-negative scalar function on TM. Put

¢:=H*"H,,.
Then we have

¢ = 2\F¢.
By definition, F' and ¢ have positive value. If A is non-negative (non-positive),
then ¢’ is non-negative (non-positive). By Theorem 5.2, we get
¢ = dmy™ = ((6) = Div(60),

where ¢ = ¢* 5ii is a geodesic vector field on the unit sphere tangent bundle
SM and Div(¢) = 0. By Theorem 5.1, we get

¢'wsar = 0.
SM

Thus the volume form wgy; on SM is obtained from volume form w on M. Since
¢’ is homogeneous function, and its sign is negative (positive), then ¢’ = 0, and
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we have g = 0or A =0. If ¢ =0, then H = 0. If A = 0, then k = 0. In this
case
H' = Ejy” =0.
Thus H(¢) = H(0), which implies that
H(t) = tH(t) + E(0).
Letting ¢ — Foo, and using ||E|| < oo, we get H(0) = 0. Thus
H(t) =0.
Now, suppose A = constant, then the general answer of (6.1) is as follows
H(t) = H(0)exp(tA).
Using ||E|| < oo and letting ¢ — 400 this implies that H(0) = 0, thus
H(t) =0.
This completes the proof. ([

Corollary 6.1. Let (M, F) be Finsler surface. Then, every non-negative (non-
positive) relatively isotropic stretch H-curvature is a B-metric.

Acknowledgment: The authors are grateful for Dr. S. G. Elgendi for his
continuous help and encouragement.
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