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On conformal vector fields of a square Finsler metrics
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Abstract. The first interesting example of square metrics was constructed by
L. Berwald in 1929. Then Shen introduced the class of square metrics as a
normal extension of Berwald’s metric. In this paper, we study the conformal
vector fields of special («, 8)-metrics, namely, square metric. We characterize
the PDE’s of conformal vector fields of square metric.

Keywords: Finsler space, conformal vector fields, square metric.

1. Introduction

Finsler metrics are just Riemannian metrics without quadratic restrictions.
The simplest non-Riemannian Finsler metrics are Randers metrics F' = a + 3,
which were firstly studied by a Physist Randers [9], where o = \/a;;(z)y’y’
is Riemannian metric and 8 = b;y’ is a 1-form ||S:||o < 1, respectively. It is
known that every Randers metric on a manifold M can be expressed in terms
of a Riemannian metric h = \/h;;(x)y'y’ and a vector field W = W (x)d/0z"
with ||W,||n < 1 by the following formulas

Ay||? p
o= ||y||h;_<y7w>7 5:_M y e T, M,

N
where
A=1—|[Welly
and (, ), and ||.||» denote the inner product and norm defined by h, respectively.
Let F™ = (M"™,F) be an n-dimensional Finsler space, where M" is an

n-dimensional differentiable manifold equipped with a fundamental function
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F = F(z,y), = (2*) is a point and y = (y') is supporting element of differ-
entiable manifold M"™. The fundamental function F' = F(z,y) is called Finsler
metric. The idea of (a, 8)-metric was introduced by M. Matsumoto ([5],[6])
and has been studied in detail. A Finsler metric F = F(a, 8) on a differen-
tiable manifold M is a positively homogeneous function of degree one in « and
B. There are several important («, 8)-metrics, namely Z. Shen’s square metric
F = (a+ B)?/a, Kropina metric F' = o2/, Randers metric F' = (a+ 3), Mat-
sumoto metric F' = a?/(a — ) and generalized Kropina metric F' = o"+1/3".
In this paper, we shall study the conformal vector fields of a Finsler space
with the square metric, whose metric is defined in Riemannian metric o and
1-form 8 and its norm. The goal of the present paper is to investigate the
PDE’s of conformal vector fields with the square metric F = (a + 3)?/a. In
natural way, we consider the general («, 5)-metrics are defined as the form:

F =ap(b?,s), s="—, (1.1)

«

where b% := || ]|

2. Preliminaries

Let M be an n-dimensional differentiable manifold and T'M be the tangent
bundle. A Finsler metric on M is the function F = F(z,y) : TM — R
satisfying the following conditions:

(1) F(z,y) is a C* function on TM\{0};
(2) F(z,y) > 0and F(z,y) =0—y = 0;
(3) F(z,\y) = AF(z,y),A > 0;

(4)

4) the following fundamental tensor is positively defined
1 9%(F?)
Let
_ 1 _ 1094
Cijk = 1 [F?] yiysye = 359

Define symmetric trilinear form C' = C;jpdr! @ da? @ dx* on TM\{0}. The
quantity C' is called the Cartan torsion.
Let F be a Finsler metric on an n-dimensional manifold M. The canonical
geodesic o = o(t) of F is characterized by
d?o'(t)
dt?

where G? are the geodesic coefficients having the expression

i1
G = 397 { [Py — [F)us}

+2G (o (t),0(t)) =0,
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with (¢”) = (gi;) ! and & = do’/dt 0/0x". A spray on M is a globally C>

vector field G on TM\{0} which is expressed in local coordinates as follows

0 . 0
- —2G'—.

oz’ Yyt

Given geodesic coefficients G, we define the covariant derivatives of a vector

field X = X*(t)0/0z" along a curve ¢ = c(t) by

G=y

. A . . 9
DX (1) = {X7(t) + X7 (t)Nj(c(t),c(t))}m,
where .
i _ 0G" (t) = ax
G T Cdt

and ¢ = dc'/dtd/dz".
It is easy to verify that

D.(X +Y)(t) = DX (t) + DY (1),
and
De(fX)(t) = F1 ()X (8) + f(£) DX (2).
Since D, linearly depends on X (t), then DX (¢) is called the linear covariant
derivative. It is easy to see that the canonical geodesic satisfies Ds; = 0.

Let TM be the tangent bundle and 7 : TM\{0} — M the natural projection.
According to the pulled - back bundle 7*T'M admits a unique linear connection
called the Chern connection.

We consider the Finsler space (M™, F'), where F' is the Z. Shen’s square
metric is given by

F(a,B) = (Cha) 26)2

in in terms of a Riemannian metric o and a vector field V on M.
Consider equation (1.1) is

F = ag (v, é),
@
where ¢ = ¢(b?,s) is a positive smooth function on [0,by) x (=bg,bp). It is
required that
¢ — 25 >0, ¢— dos+ (b° — s%)¢ar > 0, (2.1)
for b < by, where ¢1, @2, @22, are defined in [19].
We write the function where ¢ = ¢(b%, s) in the following Taylor expansion

¢ =qo+ q15 + g5 +o(s?),

where
1 1 1

’L:Zb27 :717 :77 = 571 19\2/9°
g =ai(b%), qo (1— )% Q1 1_12 42 2(1 — b2)3/2
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Now (2.1) implies that
@ >0, go+2b%g2 > 0.

But there is no restriction on ¢;. If we assume that ¢; # 0, then F' is not
reversible.

Now we investigate the explicit expression of conformal vector field on square

metric
1+ 3s

(1- )V P12

$(b%,5) =
and (2.6) and (2.7) satisfy

1 1 1 1 1 1
—+q4—q—°+{q£(2qi_q£)_q£}b2 S (2.2)

22 @1 g g1 G 4o C202(1 — b2)°

2.1. Conformal Vector Fields. Let F' be a Finsler metric on a manifold M,
and V be a vector field on M. Let ¢; be the flow generated by V. Define

¢:TM — TM by
du2,y) = (0(2),60 % (9) ).
Then V is said to be conformal if
¢FF = e 2t F, (2.3)

where oy is a function on M for every ¢.
Differentiating the equation (2.3) by t at ¢ = 0, we obtain

X, (F) = —2cF, (2.4)

where c is called the conformal factor and we define

o vio
ozt 7 B 8yj’c_dt

X, =V |t = 0. (2.5)

In this paper, we are going to consider the examples of the Randers metrics
and the square metrics are defined by functions ¢ = ¢(b?,s) in the following

form
Vi_p2 2
o= 1_:28 Rkl (2.6)
b (VI—02+ % +5) e

(1-02)2/1 b2+ 52

For more progress see [3].

First, we prove the following.
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Theorem 2.1. Let F = (a+ f8)?/a be a square metric on an n-dimensional
manifold M (n > 3) and let V = V*(2)0/dz" be a conformal vector field. Then
V' is a conformal vector field of F' with conformal factor ¢ = c(x) if and only if
X, (b?) =0 and

Vi + Vs = dea,  V7biyj + b7V = 2¢P. (2.8)

Proof. In this we shall endeavor to present an introduction to the square metric
with (2.6). Let V be a conformal vector field of F' with conformal factor
¢ = c(x).

i.e., Xo(F?) = 4cF2. (2.9)
From (2.6) and to solve the (2.9) with the square metric, we have
(a+pB)* 1+43s

F(aaﬁ): a - (1_b2)ma

then (2.9) implies
Xv(F2) = ¢2Xv(a2) + 042Xv(¢2)7

Xo(F?) = ¢* X, (0?) + 200201 X, (0%) + 20¢20X,(B) — 26028X,(ar),

X, (F?) = Py X, (a?) + P X, (b?) + 6aX,(B) + Ps65X,(a), (2.10)
where,

(1+ 3s)?
(1—-02)2(1— b2+ s2)’
(1+3s)(3+ 65— b?)

Py =

P = (1—b2)3(1 — b2 + 52)2’
P — (1+ 3s)?
(1 —02)V/1 b2+ 52
(14 3s)

Py = .
ST -1t s2

Note that
Xv(a2) =2Vo0, Xu(B) = (iji;j + ijj;i)i‘/i'
Then equation (2.10) equivalent to

(¢ — d25)Viso + ada (Vb + bV )y (01X, (b?) — 2¢h)a® = 0,

(Py — 35)Vo,o + 3a(VIbi; + b Vii)y' + PyX,(b%) — Ps2c(a)®* =0,  (2.11)
where
(3 + 65— b?)

P = .
o1 - b2)2(1 - b2 + s2)3/2
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To simplify the computation, at a fixed point z € M and make a co-ordinate
change such that

b b
y=———a, a=_-—a, f=——a a=|> (¥

b2 — 2

Then we have
2

s? - — S I
Vo;o = V1;1 ma2 + (V1;0 + VO;I)WQ + VO;Ou (2'12)
iji + b]VNy’ = (ijhj + bj‘/};l)ﬁa + (ng();j + ijj;())7 (2.13)
where,
. . n - n
VI;O + VO;l = Z(Vl;q +V, ;1)yp’ VO;O = Z Vi ;T'yq’ (214)
q=2 q,7r=0

VjEO;j + ijJ;O = Z(ijp;j + ijj;p)yp-
p=2
From (2.12) and (2.13) in to (2.11), which yields

52

(P3 —35){‘/1;1m642+(‘/1;0+v0;1) 6""‘/0;0}

S
b , , s B N
Vb1, + V' Vj1)——=—=a i 4 VIV
+3md(V bi;j + b Vj;1)ma+ (VIbo,j + b Vj0)

b2
+ Py X, (0?) — 2cpgma2 =0. (2.15)

Consider the polynomial

Py = qo + q15 + qas” + o(s?)
with ¢; = ¢;(b®) then we have,

Py=q} +qis+qis® + o(s?).

By letting s = 0 in (2.15) then

qoVo.0 +q(Viby; + 6V j0)a + {gd X, (b?) — 2cqo}a? = 0. (2.16)
According to the irrationality of @, the (2.15) is equivalent to

a1 (V7o + ¥V ) =0, (2.17)

20 (Voo + g9 Xu(b%) = 2¢q0)a® = 0. (2.18)

Since ¢ # 0 by assumption, by (2.17) yields
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ijq;j + ijj;q =0. (219)
By (2.18) we have
Vor + Vi = {% (b%) = 2¢}8p, 2<qr<n, (2.20)
Again irrationality of @ from (2.15) we get
— — s
P; —38) (V1o + Vo) ————a = 0, 2.21
(P3 ) (V10 o,1)m (2.21)

and
1 1
2 . 90 2\ _J% 2\ _ 2
$2(Py 33){V1;1 +(2X) 20)} {qo X, (b%) 2c}(P3 3s)b
+3sb(VIbyj + b V1) + Pub? X (b?) — 2¢b® = 0. (2.22)
From (2.18) we get
Vio+ Voa =0.
This equivalent to
Vi + V1 = 0. (2.23)

Solving (2.16) for V.o and plugging it in to (2.20) we have

1

82(P3 — 38){V1;1 + (%Xv(bQ) — 20)}

- {Z:XU(Z)Q) - 2c}(P3 — 35)p?

+3sb(V7by,; + b V) + Pab® X, (b?) — 2¢P5 = 0. (2.24)

By Taylor series, expansion of ¢(b?, s) then plugging it in to (2.22) and by the
coefficients of s we have.

. . oq
b1 (V71 + 6 V) + 02X (b2)8b2 2cb*q; = 0. (2.25)
Then
Vibig + 6V = = (L X,(0%) — 2¢)o. (2.26)
q1
Then by (2.23) and (2.24) we have
) ) 1
Vibi; + bV = —(gixv(zﬁ) — 20)b. (2.27)
1

Substituting (2.27) in (2.24) , we have

ql
(P; — 33)52{1/1;1 + Dy 2 - 2c}
q0

Y 2 qj _ _ @ _
VX, (0%) 2 (Ps —3s) — Py +3s2 b =0.  (2.28)
q0 q0
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The coefficients of all powers of s must vanish in (2.28). In particular, the

coefficients of s? vanishes.
‘We have

1
Via + Z—OXU(bZ) — 2cb = —bX, (b?) Ry,
0
where
1 1 1
Ry— B B _ e
dodo 4o q1 9o
By (2.20),(2.23) and (2.29), we have

1
‘/i;j + ‘/371 = 4cpij — QXU(ZF){ZQPU + Robzbj}
0
It equivalent to

g
Viij + Vi = dea — 2Xv(b2){qf0a + Roﬁ}.
0

Contracting (2.31) with b* and &’ yields
Vi bibi = 2¢b® — bQXU(bQ){—O + RObQ}.
do
This equivalent to
Vi b = 2c82 — 12X, (b?).
Contracting (2.27) with b* and &’ yields

o 1 1
Vi b = 2cb? — bQXU(bZ){@ + 3—1}

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Here, we used the fact that X, (b%) = 2b;xb'V* . Then comparing (2.32) with

(2.33) yields
X, (0*){R; — Ryb*} = 0,

where . )
1 q1 [s)

Ri=—+——-——

202 1 qo

Now, (2.34) reduced to
X, (b*){Ry + Rab*} = 0.
Here, two cases arises : Case 1: If
Ry + Ryb* #0,

where L1 . .
Ry=N0% B2 oN%

Goqdo 9o 41 9o
It follows from (2.36) that X, (b*) = 0 and in (2.27) and we have

Vij + Vju = dea, Vb + bV = 2¢B.

(2.34)

(2.35)

(2.36)

(2.37)
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Notice that if X, (b?) = 0 and (2.37) holds then V satisfies (2.10) and V is an
conformal vector field. This completes the proof. O

Theorem 2.2. Let F = (a+ 8)?/a be a square metric on an n-dimensional
manifold M (n > 3) and let V = V(2)0/dz" be a conformal vector field. Then
V is a conformal vector field of F with conformal factor ¢ = ¢(x) if and only if

Vij + Vi = dea — 2X,(b%)b? Ry bsb;,

Vb + Vi = 228, (2.38)
Xv(bZ){Plb‘l[(bQ - SQ)R’;]} 4+ Py ((1 - bz)ljlisbzﬁ)i —0. (2.39)
Proof. If
Ry + Rob* = 0. (2.40)
In this case X, (b?) # 0. Then obviously, we have
Vi + Vi = dea — 2X,(b*)b 2Ry b;b;, (2.41)
Vb + Vb’ = 2¢B. (2.42)

Since V is conformal vector field and (2.42) then (2.10) is reduced to

XA PO~ AR+ P (P ) g )
! ! (1-)VI-02+s2/q
and )
_ 1 q
c=c— -X,(b*) 2.
2 ( )QO
Hence this theorem is proved. (]
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