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Abstract. The first interesting example of square metrics was constructed by

L. Berwald in 1929. Then Shen introduced the class of square metrics as a

normal extension of Berwald’s metric. In this paper, we study the conformal

vector fields of special (α, β)-metrics, namely, square metric. We characterize

the PDE’s of conformal vector fields of square metric.
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1. Introduction

Finsler metrics are just Riemannian metrics without quadratic restrictions.

The simplest non-Riemannian Finsler metrics are Randers metrics F = α+ β,

which were firstly studied by a Physist Randers [9], where α =
√

aij(x)yiyj

is Riemannian metric and β = biy
i is a 1-form ||βx||α < 1, respectively. It is

known that every Randers metric on a manifold M can be expressed in terms

of a Riemannian metric h =
√
hij(x)yiyj and a vector field W = W i(x)∂/∂xi

with ||Wx||h < 1 by the following formulas

α =

√
λ||y||2h + ⟨y,Wx⟩

λ
, β = −

⟨x, y⟩h
λ

, y ∈ TxM,

where

λ = 1− ||Wx||2h
and ⟨, ⟩h and ||.||h denote the inner product and norm defined by h, respectively.

Let Fn = (Mn, F ) be an n-dimensional Finsler space, where Mn is an

n-dimensional differentiable manifold equipped with a fundamental function
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F = F (x, y), x = (xi) is a point and y = (yi) is supporting element of differ-

entiable manifold Mn. The fundamental function F = F (x, y) is called Finsler

metric. The idea of (α, β)-metric was introduced by M. Matsumoto ([5],[6])

and has been studied in detail. A Finsler metric F = F (α, β) on a differen-

tiable manifold M is a positively homogeneous function of degree one in α and

β. There are several important (α, β)-metrics, namely Z. Shen’s square metric

F = (α+ β)2/α, Kropina metric F = α2/β, Randers metric F = (α+β), Mat-

sumoto metric F = α2/(α− β) and generalized Kropina metric F = αn+1/βn.

In this paper, we shall study the conformal vector fields of a Finsler space

with the square metric, whose metric is defined in Riemannian metric α and

1-form β and its norm. The goal of the present paper is to investigate the

PDE’s of conformal vector fields with the square metric F = (α+ β)2/α. In

natural way, we consider the general (α, β)-metrics are defined as the form:

F = αϕ(b2, s), s =
β

α
, (1.1)

where b2 := ||β||α.

2. Preliminaries

Let M be an n-dimensional differentiable manifold and TM be the tangent

bundle. A Finsler metric on M is the function F = F (x, y) : TM −→ R

satisfying the following conditions:

(1) F (x, y) is a C∞ function on TM\{0};
(2) F (x, y) ≥ 0 and F (x, y) = 0 → y = 0;

(3) F (x, λy) = λF (x, y), λ > 0;

(4) the following fundamental tensor is positively defined

gij(x, y) =
1

2

∂2(F 2)

∂yi∂yj

Let

Cijk = 1
4

[
F 2

]
yiyjyk = 1

2
∂gij
∂yk .

Define symmetric trilinear form C = Cijkdx
i
⊗

dxj
⊗

dxk on TM\{0}. The

quantity C is called the Cartan torsion.

Let F be a Finsler metric on an n-dimensional manifold M . The canonical

geodesic σ = σ(t) of F is characterized by

d2σi(t)

dt2
+ 2Gi

(
σ(t), ˙σ(t)

)
= 0,

where Gi are the geodesic coefficients having the expression

Gi =
1

4
gij

{
[F 2]xkylyk − [F 2]xl

}
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with (gij) = (gij)
−1 and σ̇ = dσi/dt ∂/∂xi. A spray on M is a globally C∞

vector field G on TM\{0} which is expressed in local coordinates as follows

G = yi
∂

∂xi
− 2Gi ∂

∂yi
.

Given geodesic coefficients Gi, we define the covariant derivatives of a vector

field X = Xi(t)∂/∂xi along a curve c = c(t) by

DiX(t) =
{

˙Xi(t) +Xj(t)N i
j(c(t),

˙c(t))
} ∂

∂xi|c(t)
,

where

N i
j =

∂Gi

∂yj
, ˙Xi(t) =

dXi

dt

and ċ = dci/dt∂/∂xi.

It is easy to verify that

Dċ(X + Y )(t) = DċX(t) +DċY (t),

and

Dċ(fX)(t) = f1(t)X(t) + f(t)DċX(t).

Since D ˙c(t) linearly depends on X(t), then DċX(t) is called the linear covariant

derivative. It is easy to see that the canonical geodesic satisfies Dσ̇ = 0.

Let TM be the tangent bundle and π : TM\{0} → M the natural projection.

According to the pulled - back bundle π∗TM admits a unique linear connection

called the Chern connection.

We consider the Finsler space (Mn, F ), where F is the Z. Shen’s square

metric is given by

F (α, β) =
(α+ β)2

α
in in terms of a Riemannian metric α and a vector field V on M .

Consider equation (1.1) is

F = αϕ
(
b2,

β

α

)
,

where ϕ = ϕ(b2, s) is a positive smooth function on [0, b0) × (−b0, b0). It is

required that

ϕ− ϕ2s > 0, ϕ− ϕ2s+ (b2 − s2)ϕ22 > 0, (2.1)

for b < b0, where ϕ1, ϕ2, ϕ22, are defined in [19].

We write the function where ϕ = ϕ(b2, s) in the following Taylor expansion

ϕ = q0 + q1s+ q2s
2 + o(s3),

where

qi = qi(b
2), q0 =

1

(1− b2)
1
2

, q1 =
1

1− b2
, q2 =

1

2(1− b2)3/2
.
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Now (2.1) implies that

q0 > 0, q0 + 2b2q2 > 0.

But there is no restriction on q1. If we assume that q1 ̸= 0, then F is not

reversible.

Now we investigate the explicit expression of conformal vector field on square

metric

ϕ(b2, s) =
1 + 3s

(1− b2)
√
1− b2 + s2

and (2.6) and (2.7) satisfy

1

2b2
+

q11
q1

− q10
q0

+
{q2
q0

(2
q11
q1

− q10
q0

)− q12
q0

}
b2 =

1

2b2(1− b2)
. (2.2)

2.1. Conformal Vector Fields. Let F be a Finsler metric on a manifold M ,

and V be a vector field on M . Let ϕt be the flow generated by V . Define

ϕ̃ : TM → TM by

ϕt(x, y) =
(
ϕt(x), ϕt ∗ (y)

)
.

Then V is said to be conformal if

ϕ∗
t F̃ = e−2σtF, (2.3)

where σt is a function on M for every t.

Differentiating the equation (2.3) by t at t = 0, we obtain

Xv(F ) = −2cF, (2.4)

where c is called the conformal factor and we define

Xv = V i ∂

∂xi
+ yi

∂V j

∂xi

∂

∂yj
, c =

d

dt
|t = 0σt. (2.5)

In this paper, we are going to consider the examples of the Randers metrics

and the square metrics are defined by functions ϕ = ϕ(b2, s) in the following

form

ϕ =

√
1− b2 + s2 + s

1− b2
. (2.6)

ϕ =
(
√
1− b2 + s2 + s)

(1− b2)2
√
1− b2 + s2

. (2.7)

For more progress see [3].

First, we prove the following.
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Theorem 2.1. Let F = (α+ β)2/α be a square metric on an n-dimensional

manifold M (n ≥ 3) and let V = V i(x)∂/∂xi be a conformal vector field. Then

V is a conformal vector field of F with conformal factor c = c(x) if and only if

Xv(b
2) = 0 and

Vi;j + Vj;i = 4cα, V jbi;j + bjVj;i = 2cβ. (2.8)

Proof. In this we shall endeavor to present an introduction to the square metric

with (2.6). Let V be a conformal vector field of F with conformal factor

c = c(x).

i.e.,Xv(F
2) = 4cF 2. (2.9)

From (2.6) and to solve the (2.9) with the square metric, we have

F (α, β) =
(α+ β)2

α
=

1 + 3s

(1− b2)
√
1− b2 + s2

,

then (2.9) implies

Xv(F
2) = ϕ2Xv(α

2) + α2Xv(ϕ
2),

Xv(F
2) = ϕ2Xv(α

2) + 2ϕα2ϕ1Xv(b
2) + 2ϕϕ2αXv(β)− 2ϕϕ2βXv(α),

Xv(F
2) = P0Xv(α

2) + P1α
2Xv(b

2) + 6αXv(β) + P36βXv(α), (2.10)

where,

P0 =
(1 + 3s)2

(1− b2)2(1− b2 + s2)
,

P1 =
(1 + 3s)(3 + 6s− b2)

(1− b2)3(1− b2 + s2)2
,

P2 =
(1 + 3s)2

(1− b2)
√
1− b2 + s2

,

P3 =
(1 + 3s)

(1− b2)
√
1− b2 + s2

.

Note that

Xv(α
2) = 2V0;0, Xv(β) = (V jbi;j + bjVj;i)y

i.

Then equation (2.10) equivalent to

(ϕ− ϕ2s)V0;0 + αϕ2(V
jbi;j + bjVj;i)y

i(ϕ1Xv(b
2)− 2cϕ)α2 = 0,

(P3 − 3s)V0;0 + 3α(V jbi;j + bjVj;i)y
i + P4Xv(b

2)− P32c(α)
2 = 0, (2.11)

where

P4 =
(3 + 6s− b2)

2(1− b2)2(1− b2 + s2)3/2
.
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To simplify the computation, at a fixed point x ∈ M and make a co-ordinate

change such that

y =
s√

b2 − s2
α, α =

b

b2 − s2
α, β =

bs√
b2 − s2

α, α =

√√√√ n∑
q=2

(yq)2.

Then we have

V0;0 = V1;1
s2

b2 − s2
α2 + (V 1;0 + V 0;1)

s√
b2 − s2

α+ V 0;0, (2.12)

V jbi + bjVj;iy
i = (V jb1;j + bjVj;1)

s√
b2 − s2

α+ (V jb0;j + bjV j;0), (2.13)

where,

V 1;0 + V 0;1 =

n∑
q=2

(V1;q + Vq;1)y
p, V 0;0 =

n∑
q,r=0

Vq;ry
q, (2.14)

V jb0;j + bjV j;0 =
n∑

p=2

(V jbp;j + bjVj;p)y
p.

From (2.12) and (2.13) in to (2.11), which yields

(P3 − 3s)
{
V1;1

s2

b2 − s2
ᾱ2 + (V1;0 + V0;1)

s√
b2 − s2

ᾱ+ V0;0

}
+ 3

b√
b2 − s2ᾱ

(V jb1;j + bjVj;1)
s√

b2 − s2
ᾱ+ (V j b̄0;j + bj V̄j;0)

+ P4Xv(b
2)− 2cP3

b2

b2 − s2
α2 = 0. (2.15)

Consider the polynomial

P3 = q0 + q1s+ q2s
2 + o(s3)

with qi = qi(b
2) then we have,

P4 = q10 + q11s+ q12s
2 + o(s2).

By letting s = 0 in (2.15) then

q0V 0;0 + q1(V
jb0;j + bjV j;0)α+ {q10Xv(b

2)− 2cq0}α2 = 0. (2.16)

According to the irrationality of α, the (2.15) is equivalent to

q1(V
jb0;j + bjV j;0) = 0, (2.17)

q0(V 0;0 + q10Xv(b
2)− 2cq0)α2 = 0. (2.18)

Since q1 ̸= 0 by assumption, by (2.17) yields

(V jb0;j + bjV j;0) = 0,
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V jbq;j + bjV j;q = 0. (2.19)

By (2.18) we have

Vq;r + Vr;q = −2
{q10
q0

Xv(b
2)− 2c

}
δqr, 2 ≤ q, r ≤ n. (2.20)

Again irrationality of α from (2.15) we get

(P3 − 3s)(V 1;0 + V 0;1)
s√

b2 − s2
α = 0, (2.21)

and

s2(P3 − 3s)
{
V1;1 + (

q10
q0

Xv(b
2)− 2c)

}
−
{q10
q0

Xv(b
2)− 2c

}
(P3 − 3s)b2

+ 3sb(V jb1;j + bjVj;1) + P4b
2X(b2)− 2cb2 = 0. (2.22)

From (2.18) we get

V 1;0 + V 0;1 = 0.

This equivalent to

V1;p + Vp;1 = 0. (2.23)

Solving (2.16) for V 0;0 and plugging it in to (2.20) we have

s2(P3 − 3s)
{
V1;1 + (

q1

q0
Xv(b

2)− 2c)
}

−
{q1

q0
Xv(b

2)− 2c
}
(P3 − 3s)b2

+ 3sb(V jb1;j + bjVj;1) + P4b
2Xv(b

2)− 2cP3 = 0. (2.24)

By Taylor series, expansion of ϕ(b2, s) then plugging it in to (2.22) and by the

coefficients of s we have.

bq1(V
jb1;j + bjVj;1) + b2Xv(b

2)
∂q1
∂b2

− 2cb2q1 = 0. (2.25)

Then

V jb1;j + bjVj;1 = −
(q11
q1

Xv(b
2)− 2c

)
bi. (2.26)

Then by (2.23) and (2.24) we have

V jbi;j + bjVj;i = −(
q11
q1

Xv(b
2)− 2c)bi. (2.27)

Substituting (2.27) in (2.24) , we have

(P3 − 3s)s2
{
V1;1 +

q10
q0

Xv(b
2)− 2c

}
−b2Xv(b

2)
{q10
q0

(P3 − 3s)− P4 + 3s
q10
q0

}
= 0. (2.28)
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The coefficients of all powers of s must vanish in (2.28). In particular, the

coefficients of s2 vanishes.

We have

V1;1 +
q10
q0

Xv(b
2)− 2cb = −b2Xv(b

2)R0, (2.29)

where

R0 =
q10
q0

q2
q0

+
q10
q0

− 2
q11
q1

q2
q0

.

By (2.20),(2.23) and (2.29), we have

Vi;j + Vj;i = 4cpij − 2Xv(b
2)
{q10
q0

pij +R0bibj

}
. (2.30)

It equivalent to

Vi;j + Vj;i = 4cα− 2Xv(b
2)
{q10
q0

α+R0β
}
. (2.31)

Contracting (2.31) with bi and bj yields

Vi;jb
ibj = 2cb2 − b2Xv(b

2)
{q10
q0

+R0b
2
}
. (2.32)

This equivalent to

Vi;jb
ibj = 2cβ2 − b2Xv(b

2).

Contracting (2.27) with bi and bj yields

Vi;jb
ibj = 2cb2 − b2Xv(b

2)
{ 1

2b2
+

q11
q1

}
. (2.33)

Here, we used the fact that Xv(b
2) = 2bi;kb

iV k . Then comparing (2.32) with

(2.33) yields

Xv(b
2){R1 −R0b

2} = 0, (2.34)

where

R1 =
1

2b2
+

q11
q1

− q10
q0

.

Now, (2.34) reduced to

Xv(b
2){R1 +R2b

2} = 0. (2.35)

Here, two cases arises : Case 1: If

R1 +R2b
2 ̸= 0, (2.36)

where

R2 =
q10
q0

q12
q0

+
q12
q0

− 2
q11
q1

q2
q0

.

It follows from (2.36) that Xv(b
2) = 0 and in (2.27) and we have

Vi;j + Vj;i = 4cα, V jbi;j + bjVj;i = 2cβ. (2.37)
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Notice that if Xv(b
2) = 0 and (2.37) holds then V satisfies (2.10) and V is an

conformal vector field. This completes the proof. □

Theorem 2.2. Let F = (α+ β)2/α be a square metric on an n-dimensional

manifold M (n ≥ 3) and let V = V i(x)∂/∂xi be a conformal vector field. Then

V is a conformal vector field of F with conformal factor c = c(x) if and only if

Vi;j + Vj;i = 4c̄α− 2Xv(b
2)b−2R1bibj ,

V jbi;j + Vj;i = 2c̄β, (2.38)

Xv(b
2)
{
P1b

−1[(b2 − s2)R∗
1]
}
+ P2 −

( 1 + 3s

(1− b2)
√
1− b2 + s2

)q11
q1

= 0. (2.39)

Proof. If

R1 +R2b
2 = 0. (2.40)

In this case Xv(b
2) ̸= 0. Then obviously, we have

Vi;j + Vj;i = 4c̄α− 2Xv(b
2)b−2R1bibj , (2.41)

V jbi;j + Vj;ib
j = 2c̄β. (2.42)

Since V is conformal vector field and (2.42) then (2.10) is reduced to

Xv(b
2){P1b

−1[(b2 − s2)R∗
1]}+ P2 −

( 1 + 3s

(1− b2)
√
1− b2 + s2

)q11
q1

= 0. (2.43)

and

c = c− 1

2
Xv(b

2)
q10
q0

.

Hence this theorem is proved. □
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