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Abstract. In this paper, relation between pseudoconvex and quasi convex

functions is introduced in the context of Riemannian manifolds. In this setting

first order characterization of pseudoconvex (strongly pseudoconvex) functions

is obtained.
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1. Introduction

Convexity plays a central role in the analysis of mathematical programming

problems. Numerous generalizations of convex functions have been derived

which proved to be useful for extending optimality conditions, previously re-

stricted to convex programs, to larger classes of optimization problems. Among

different classes of generalized convex functions, pseudoconvexity plays a key

role in optimization theory and in many applied sciences such as Economics

and Management Science. Pseudoconvexity owes its great relevance to the

fact that it maintains some nice optimization properties of convex functions,

such as critical and local minimum points are global minimum. This concepts

originated from Levi in 1910 within a research on analytic functions in [12]. In-

dependently of him, Tuy in [20] and Mangasarian in [14], introduced the same

notion in the field of optimization. Then several investigations are appeared in

literature see for example [9, 10, 11, 17] and references therein.
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Inspired by the concept of convexity on a linear space the notion of geodesic

convexity on some nonlinear metric spaces has become a successful tool in

optimization. Rapscák in [18] and Udriste in [23] introduced the notions of

pseudoconvex and quasiconvex functions in Riemannian manifolds settings.

Since then several important results with applications are studied extensively

and investigated in [1, 4, 21, 22] and other references. Note that the most

of known techniques are used for proving results and theorems in the linear

space setting doesn’t work in the Riemannian manifold setting. There are

non-Lipschitz, non-convex functions on linear spaces which can be Lipschitz,

convex respectively on Riemannian manifolds by endowing special metrics, see

[5, 6, 7, 23] and references therein. Motivated by above works in this paper we

investigate some characterizations of pseudoconvex and strongly pseudoconvex

functions in setting of finite dimensional Riemannian manifolds.

The paper is organized as follows: In Section 2 some concepts Riemannian

geometry are collected. Section 3 deal to characterization of pseudoconvex

functions defined on open convex subsets of Riemannian manifolds. Recall that

a complete, simply connected Riemannian manifold of nonpositive sectional

curvature is called a Hadamard manifold.

2. Preliminary

In this section we recall some notions and known results in Riemannian

manifolds, see [13, 19, 23] and references therein. Let M be a Riemannian

manifold and TxM be the tangent space to M at x ∈ M. The inner product on

TxM and associated norm is denoted by ⟨., .⟩x and by ∥.∥x respectively. The

Levi-Cività connection on M denoted by ∇. A vector field X on M is said to

be parallel along curve γ if ∇γ′X = 0. If ∇γ′γ′ = 0 then γ is said to be a

geodesic. A Riemannian manifold is complete if for any x ∈ M all geodesics

emanating from x are defined on R. By the Hopf-Rinow theorem, we know that

if M is complete and connected and finite-dimensional, then any pair of points

in M can be joined by a minimal geodesic. For every t ∈ [a, b], ∇ induces an

isometry, relative to ⟨, ⟩, P y
x,γ : TxM → TyM , the so-called parallel transport

along γ from γ(a) = x to γ(t) = y. When γ is unique minimal geodesic we

denote this isometry by P y
x .

Recall that a subset S of a Riemannian manifold is called convex if any

two points x, y ∈ S can be joined by a unique minimizing geodesic which lies

entirely in S (see [13, 19]). It is known that exp−1
x is well-defined on every

convex set S,

d(x, y) = || exp−1
x (y)||x, for every x, y ∈ S

and

t 7→ expx(t exp
−1
x y) for all t ∈ [0, 1],
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where expx for every x ∈ M is the restriction of the exponential map exp to

TxM in tangent bundle TM , see [5, 8]. The Riemannian metric induces a map

f 7→ gradf ∈ X (M) (the set of all vector fields on M) which associates to each

differentiable function f at x ∈ M , its gradient via the rule⟨
gradf(x), v

⟩
x
=

d

dt
f
(
expx(tv)

)∣∣∣
t=0

, v ∈ TxM.

We need the following definition taken from [1, 6, 8, 18, 23]

Definition 2.1. Let M be a Riemannian manifold and C be nonempty convex

subset of M. Suppose that f is a real valued function on C. Then,

(i) f is said to be convex if for every x, y ∈ C and every t ∈ [0, 1]

f
(
expx(t exp

−1
x y)

)
≤ (1− t)f(x) + tf(y),

(ii) f is said to be strongly convex with module λ > 0 if for every x, y ∈ C and

every t ∈ [0, 1]

f
(
expx(t exp

−1
x y)

)
≤ (1− t)f(x) + tf(y)− λt(1− t)d2(x, y),

(iii) f is said to be quasiconvex if for every x, y ∈ C and every t ∈ [0, 1]

f(x) ≤ f(y) implies f
(
expx(t exp

−1
x y)

)
≤ f(y), (2.1)

or

f
(
expx(t exp

−1
x y)

)
≤ max{f(x), f(y)},

(iv) f is said to be pseudoconvex if it is differentiable and for every x, y ∈ C,⟨
gradf(x), exp−1

x y
⟩
x
≥ 0 ⇒ f(y) ≥ f(x). (2.2)

Note that 2.2 is equivalent to the following implication

f(y) < f(x) ⇒
⟨
gradf(x), exp−1

x y
⟩
x
< 0. (2.3)

For important properties of quasiconvex and pseudoconvex functions see [18,

23, 22] and references therein.

3. Characterization of pseudoconvex functions

In this section some results concerning the properties of pseudoconvec func-

tions are introduced. Then by utilizing the obtained results, a characterization

of differentiable convex (strongly convex) functions on open convex subsets of

Riemannian manifolds is given. We start with the following theorem which

established the relationship between quasiconvex and pseudoconvex functions

(see [2, p. 45]).
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Theorem 3.1. Let C be an open convex subset of M and f : C → R be a

differentiable function.

(i) If f is pseudoconvex on C then, f is quasiconvex on C.

(ii) If gradf(x) ̸= 0 for every x ∈ C then, f is pseudoconvex on C if and only

if f is quasiconvex on C

Proof. We prove this theorem part by part:

(i) The proof is similar to the Lemma 3.2 in [22, p. 500].

(ii) By part (i) it suffices that we only prove the ”if part”. Suppose that f

is quasiconvex on C. On contrary assume that f is not pseudoconvex. Hence

there exist x, y ∈ C with f(y) < f(x) and gradf(x) ̸= 0 such that

⟨gradf(x), exp−1
x y⟩x ≥ 0.

Taking into account that f is quasiconvex we have

⟨gradf(x), exp−1
x y⟩x ≤ 0

hence

⟨gradf(x), exp−1
x y⟩x = 0. (3.1)

By continuity of f there exists ε > 0 such that z := expx(εgradf(x)) ∈ C and

f(z) < f(x). It follows from quasiconvexity of f and (2.3) that

⟨gradf(x), exp−1
x z⟩x ≤ 0. (3.2)

On the other hand

⟨gradf(x), exp−1
x z⟩x = ⟨gradf(x), exp−1

x

(
expx(εgradf(x))

)
⟩x

= ⟨gradf(x), εgradf(x)⟩x
= ε||gradf(x)||2x > 0.

This contradicts (3.1) or (3.2) if z = y or z ̸= y respectively and proof is

completed. □

As we see in the next example the assumption gradf(x) ̸= 0 is essential for

the validity of part (ii) of theorem 3.1.

Example 3.2. Let

M :=
{
(y1, y2, y3) : y

2
1 + y22 + y23 = 1

}
be the unit 2−sphere with the Riemannian distance function defined by

cos d(x, y) = ⟨x, y⟩ for all x, y ∈ M,

where ⟨, ⟩ is the usual inner product on R3, (see [19, 23]). Pick

C :=
{
y = (y1, y2, y3) : d(y, x̄) <

π

5
, x̄ = (0, 0, 1)

}
.
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It is easy to see that C is an open convex subset of M. Simple computation

show that the function f : C → R is defined by

f(y) := −1

2
d2(y, x̄),

is differentiable quasiconvex and gradf(x̄) = 0. On the other hand

f(x̄) = 0 > f(ȳ) = −π2

72
, for ȳ :=

(1
2
, 0,

√
3

2

)
,

while ⟨
gradf(x̄), exp−1

x̄ ȳ
⟩
x̄
= 0

which show that f is not a pseudoconvex function.

The following characterization of pseudoconvex functions is an improvement

of theorem 2 in [10, p. 681] to Riemannian manifolds.

Theorem 3.3. Let C be an open convex subset of M and f : C → R is a

differentiable function. Then, the following statements are equivalent

(i) f is a pseudoconvex function.

(ii) For every x, y ∈ C there exists a positive function p : C×C → R such that

f(y) ≥ f(x) + p(x, y)⟨gradf(x), exp−1
x y⟩x.

Proof. The implication (ii) ⇒ (i) is obvious.

(i) ⇒ (ii). For every x, y ∈ C we construct explicitly the function p as follows

p(x, y) =
f(y)− f(x)

⟨gradf(x), exp−1
x y⟩x

, f(y) < f(x) or
⟨
gradf(x), exp−1

x y
⟩
x
> 0,

1 , otherwise.

The function p is well defined, non-negative and it satisfies requirement condi-

tions. Indeed, according to the pseudoconvexity of f the sets{
(x, y) ∈ C × C | ⟨gradf(x), exp−1

x y⟩x > 0
}
,

and {
(x, y) ∈ C × C

∣∣ f(y) < f(x)
}
,

have an empty intersection. If f(y) < f(x) then by contra positive form of

implication (2.2) we have

⟨gradf(x), exp−1
x y⟩x < 0

and p is positive.If ⟨gradf(x), exp−1
x y⟩x > 0 then f(y) > f(x) because of the

pseudoconvexity, and p is non-negative. Otherwise,

⟨gradf(x), exp−1
x y⟩x ≤ 0 and f(y) ≥ f(x).
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Therefore,

f(y)− f(x) ≥ 0 ≥ ⟨gradf(x), exp−1
x y⟩x

= p(x, y)⟨gradf(x), exp−1
x y⟩x,

and proof is completed. □

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let C be an open convex subset of M and f : C → R is a

pseudoconvex differentiable function. Then for every x, y ∈ C there exists a

positive function p : C × C → R such that⟨
p(x, y)gradf(x)− p(y, x)P x

y [gradf(x)], exp−1
x y

⟩
x
≤ 0.

Now, we consider the uniform case (called uniform pseudoconvex), when the

function p is an positive constant K. More precisely suppose C is an open

convex subset of M and f : C → R is a differentiable function. Then, f is said

to be uniform pseudoonvex if there exists a constant K > 0 such that

f(y) ≥ f(x) +K⟨gradf(x), exp−1
x y⟩x, for all x, y ∈ C. (3.3)

By using (3.3) it is easy to see that

K⟨P x
y [gradf(y)]− gradf(x), exp−1

x y⟩x ≥ 0, for all x, y ∈ C, (3.4)

which implies that, gradf is a monotone vector field on C hence f is a convex

function by proposition 4.2 in [5, p. 315], see also [15, 16]. Therefore, the

class of uniform pseudoconvex functions defined in (3.3), coincides with the

differentiable convex functions. Motivated by [11] we introduce the notion of

strongly pseudoconvex functions.

Definition 3.5. Let C be an open convex subset of M and f : C → R be a

differentiable function. Then f is said to be strongly pseudoconvex with module

λ > 0 if for every x, y ∈ C,

⟨gradf(x), exp−1
x y⟩x ≥ 0 ⇒ f(y) ≥ f(x) + λd2(x, y).

In the next theorem an improvement of the previous theorem for strongly

pseudoconvex functions is given.

Theorem 3.6. Let C be an open convex subset of M and f : C → R is a

differentiable function. Then, the following statements are equivalent.

(i) The function f is a strongly pseudoconvex with module λ > 0.

(ii) For every x, y ∈ C there exists a positive function p : C×C → R such that

f(y) ≥ f(x) + p(x, y)⟨gradf(x), exp−1
x y⟩x + λd(x, y)2, (3.5)

for every x, y ∈ C.
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Proof. The implication (ii) ⇒ (i) is obvious.

(i) ⇒ (ii). For every x, y ∈ C if we define the function p as follows

p(x, y) =


f(y)− f(x)− λd(x, y)2

⟨gradf(x), exp−1
x y⟩x

, f(y) < f(x) + λd(x, y)2,

or ⟨gradf(x), exp−1
x y⟩x > 0,

1 , otherwise.

Then, similar to the proof of theorem 3.3 we see that the sets{
(x, y) ∈ C × C| ⟨gradf(x), exp−1

x y⟩x > 0
}
,

and {
(x, y) ∈ C × C|f(y) < f(x) + λd(x, y)2

}
,

have empty intersection. Therefore, the function p is well defined, non-negative

and it satisfies requirement conditions. □

Now we consider the uniform case, when the function p obtained in theorem

3.6 is an positive constant K. Let C be an open convex subset of M and

f : C → R be a differentiable function. Then, f is said to be uniform strongly

pseudoonvex with module λ > 0 if there exists a constant K > 0 such that

f(y) ≥ f(x) +K⟨gradf(x), exp−1
x y⟩x + λd(x, y)2, for all x, y ∈ C. (3.6)

By using (3.6) for every x, y ∈ C we have⟨
P x
y [gradf(y)]− gradf(x), exp−1

x y
⟩
x
≥ λ

K
d(x, y)2, for all x, y ∈ C, (3.7)

thus gradf is a strongly monotone vector field on C, hence f is a strongly

convex function by proposition 3.4 in [5, p. 315]. Therefore, the class of

uniform strongly pseudoconvex functions defined in (3.6), coincides with the

differentiable strongly convex functions. Now, we present an example which

illustrate how our results work in particular nontrivial setting of a Riemannian

manifold.

Example 3.7. Endowing

R2
++ :=

{
x = (x1, x2) ∈ R2| xi > 0, i = 1, 2

}
with the Riemannian metric

g(x) :=
( δij
x2
ij

)
, i, j = 1, 2,

we get a Hadamard manifoldM := (R2
++, g). Moreover, for every x ∈ M, TxM =

R2. Then for every x = (x1, x2), y = (y1, y2) ∈ M, the geodesic α : R → M

defined by

α(t) =
(
x1−t
1 yt1, x

1−t
2 yt2

)
, t ∈ [0, 1],
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is the unique minimal geodesic with α(0) = x, α(1) = y, see [18]. Moreover

exp−1
x y =

(
x1 ln

y1
x1

, x2 ln
y2
x2

)
.

Pick

C :=
{
x ∈ R2

++| x1.x2 > 1
}

and define the function f : C → R as

f(x) :=
1

lnx1 + lnx2
, x = (x1, x2).

Then C is an open convex subset of M. By proposition 3.1 in [1, p. 595] f is

differentiable and pseudoconvex on C. Now, let x = (x1, x2) ∈ C and x1x2 = r

then, it easy to see that

⟨gradf(x), exp−1
x y⟩x =

ln r − ln(y1y2)

(ln r)2
. (3.8)

By using Theorem 3.3, we get

f(y) ≥ f(x) + p(x, y)⟨gradf(x), exp−1
x y⟩x, for all y ∈ C,

where,

p(x, y) =


ln r

ln y1 + ln y2
, y1y2 > r or y1y2 < r,

1 , otherwise.

4. Conclusion

This paper is devoted to the study of differentiable pseudoconvex functions

in Riemannian manifold. Some characterizations of pseudoconvex functions

are presented in Riemannian manifold setting. Our approach mainly concerns

characterizations of differentiable pseudoconvex functions while main results

can be extend for the further analysis of non-differentiable pseudoconvex func-

tions on spaces with no linear structure.
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