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Abstract. In this paper, we study and investigate the conformal change of
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1. Introduction

The study of conformal geometry includes an important part of research

in Riemannian and Finsler geometry. The studies actually seek to discover

the relations between some important geometric quantities and their corre-

spondences. The conformal geometry of Riemmanian metrics have been well

studied by many geometers and has played an important role in physical the-

ories. The S curvature is a non-Riemannian quantity and play an important

role in Finsler geometry, which was introduced by Z. Shen [10]. In [11], Z.

Shen considered the projective spray G̃ associated with a given spray G on an

n-dimensional manifold which is defined by G and its S-curvature S as

G̃ = G+
2S

n+ 1
Y
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where Y := yi ∂
∂yi is vertical radial field on TM . Then G̃ is projectively invari-

ant, and it is easy to see that Ricci curvature R̃ic of G̃ is given by

R̃ic = Ric+
n− 1

n+ 1
S|mym +

n− 1

(n+ 1)2
S2,

where ” | ” denotes the horizontal covariant derivative with respect to Berwald

connection of G. Recently, Z. Shen defined the concept of projective Ricci

curvature for a Finsler metric F in Finsler geometry as

PRic := R̃ic, (1.1)

A Finsler metric is called projective Ricci curvature if PRic = 0. The concept

of isotropic PRic curvature is defined and some conditions that implies the

Randers metric has isotropic PRic-curvature are investigated [6].

The class of (α, β)-metrics form a special and important class of Finsler

metrics with many applications which can be expressed in the form F = αϕ(s),

s = β/α, where α := α(x, y) =
√

aij(x)yiyj is a positive-definite Riemannian

metric, β := β(y) = bi(x)y
i is a 1-form onM and ϕ(s) is a C∞ positive function

on some open interval. In particular, when ϕ(s) = 1 + s, the Finsler metric

F = α+ β is called a Randers metric and when ϕ(s) = 1/s, the Finsler metric

F = α2/β is called a Kropina metric. Kropina metrics were first introduced by

L. Berwald in connection with a two-dimensional Finsler space with rectilinear

extremal and were investigated by V.K.Kropina [7].

In this class we use some notations as follows

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i),

where ”; ” denotes the covariant derivative with respect to the Levi-Civita con-

nection of α. Further, put

rij := aimrmj , sij := aimsmj , rj := bmrmj ,

sj := bmsmj , qij := rimsmj , tij := simsmj ,

qj := biqij = rmsmj , tj := bitij = smsmj ,

where aij := (aij)
−1 and bi := aijbj . We will denote

ri0 := rijy
j , si0 := sijy

j , r00 := rijy
iyj , r0 := riy

i, s0 := siy
i.

In this paper, we study conformal transformation of PRic curvature of Kropina

metrics and get the following.

Theorem 1.1. Let F and F̃ be two conformally related Kropina metrics on a

manifold M . Then ˜PRic = PRic if and only if the conformal transformation

is a homothety.
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2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M , and by TM = ∪x∈MTxM the tangent bundle of M . Each element

of TM has the form (x, y), where x ∈ M and y ∈ TxM . Let TM0 = TM\{0}.
The natural projection π : TM → M is given by π(x, y) = x. The pull-

back tangent bundle π∗TM is a vector bundle over TM0 whose fiber π∗
vTM at

v ∈ TM0 is just TxM , where π(v) = x. Then

π∗TM =
{
(x, y, v)|y ∈ TxM0, v ∈ TxM

}
.

A Finsler metric on a manifold M is a function F : TM → [0,∞) which has

the following properties:

(i) F is C∞ on TM0;

(ii) F (x, λy) = λF (x, y) λ > 0;

(iii) For any tangent vector y ∈ TxM , the vertical Hessian of F 2/2 given by

gij(x, y) =

[
1

2
F 2

]
yiyj

,

is positive definite.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

one can define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) :=

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called

the mean Cartan torsion. By definition, Iy(y) = 0 and Iλy = λ−1Iy, λ > 0.

Therefore, Iy(u) := Ii(y)u
i, where Ii := gjkCijk.

For a Finsler metric F = F (x, y) on a manifold M , its geodesics are charac-

terized by the system of differential equations

c̈i + 2Gi(ċ) = 0,

where the local functions Gi = Gi(x, y) are called the spray coefficients and

are given by

Gi =
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
,

where y ∈ TxM and (gij) := (gij)
−1.
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The Riemann curvature Ry = Ri
k

∂
∂xi ⊗ dxk of F is defined by

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

When F (x, y) =
√
aij(x)yiyj is a Riemannian metric,

Ri
k = Ri

jkl(x)y
jyl,

where Ri
jkl(x) denotes the coefficients of the usual Riemannian curvature ten-

sor. Thus, the quantity Ry in Finsler geometry is still called the Riemann

curvature.

The Ricci curvature Ric is defined by

Ric := Ri
i.

By definition, the Ricci curvature is a positively homogeneous function of degree

two in y ∈ TM .

For a Finsler metric F, the Busemann–Hausdorff volume form dVBH :=

σBH(x)ω1 ∧ · · · ∧ ωn, is defined by

σBH :=
V ol(Bn(1))

V ol
{
(yi) ∈ Rn | F (x, yi ∂

∂xi |x)
} .

Here Vol{.} denotes the Euclidean volume function and Bn(1) denotes the unit

ball on Rn. When F (x, y) =
√

gij(x)yiyj is a Riemannian metric, then

σBH(x) =
√

det(gij).

There is a notion of distortion τ = τ(x, y) on TM associated with the Busemann–

Hausdorff volume form

dVBH := σBH(x)ω1 ∧ · · · ∧ ωn,

i.e.,

τ(x, y) := ln

[√
det(gij(x, y))

σBH(x)

]
.

The S−curvature is defined by

S(x, y) :=
d

dt

[
τ
(
c(t), ċ(t)

)]
|t=0,

where c(t) is the geodesic with c(0) = x and ċ(0) = y. From the definition,

we see that the S-curvature measures the rate of change of the distortion on

(TxM,Fx) in the direction y ∈ TxM . For a Finsler metric F , the S-curvature

is given by following:

S =
∂Gm

∂ym
− ym

∂

∂xm

[
lnσBH

]
. (2.1)
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3. Some Fundamental Lemmas

An (α, β)-metric can be expressed in the form F = αϕ(s), s = β/α, where

α := α(x, y) =
√
aij(x)yiyj is a Riemannian metric, β := β(y) = bi(x)y

i is a 1-

form on M , and ϕ(s) is a C∞ positive function on some open interval [4][9]. In

particular, when ϕ(s) = 1+ s, the Finsler metrics F = α+ β is called Randers

metrics, which were introduced and studied by Randers. If ϕ(s) = 1/s, the

Finsler metric F = α2/β is called a Kropina metric. Kropina metrics were

first introduced by Berwald in connection with a two-dimensional Finsler space

with rectilinear extremal and were investigated by Kropina.

By a conformal change F̃ = eκ(x)F various quantities are changed as follows:

α̃ = eκ(x)α, β̃ = eκ(x)β.

Let α̃ =
√
ãijyiyj and β̃ = b̃i(x)y

i. Then

ãij = e2κ(x)aij , ãij = e−2κ(x)aij , b̃i = eκ(x)bi, b̃i = e−κ(x)bi.

Further, we have [3]

b̃i||j = eκ(x)
(
bi;j − bjκi + faij

)
, (3.1)

where b̃i||j denote the covariant derivative of b̃i with respect to α̃ and

f := bmκm.

From (3.1), we get

s̃ij = eκ(x)
[
sij +

1

2
(biκj − bjκi)

]
, (3.2)

r̃ij = eκ(x)
[
rij −

1

2
(biκj + bjκi) + faij

]
. (3.3)

The following holds.

Lemma 3.1. [1] Let F̃ and F be two Finsler metrics on an n-dimensional

manifold M . If F̃ = eκ(x)F , then the relation between the geodesic coefficients

G̃i and Gi is given by

G̃i = Gi + κ0y
i − F 2

2
κi, (3.4)

where κi = gilκl. Further, we have

G̃i
j = Gi

j + κjy
i + κ0δ

i
j − yjκ

i, (3.5)

G̃i
jk = Gi

jk + κjδ
i
k + κkδ

i
j − gjkκ

i. (3.6)
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Lemma 3.2. Let F̃ and F be two (α, β)-metrics on an n-dimensional manifold

M . If F̃ = eκ(x)F , then

(a) α̃Ric = αRic− α2aijκi;j + (n− 2)
(
κ2
0 − κ0;mym − α2κmκm

)
,(3.7)

(b) s̃m0 = e−κ(x)
[
sm0 +

1

2
(bmκ0 − βκm)

]
, (3.8)

(c) s̃m0||m = e−κ(x)

[
sm0;m + (n− 3)sm0κm +

1

2
(bmκ0 − βκm);m

+
(n− 3)

2
(fκ0 − βκmκm)

]
, (3.9)

(d) t̃00 = t00 + βκmsm0 − s0κ0 +
1

2
fβκ0 −

1

4
(β2κmκm + b2κ2

0), (3.10)

(e) t̃mm = e−2κ(x)
[
tmm − 2smκm +

1

2
(f2 − b2κmκm)

]
, (3.11)

(f) s̃0 = s0 +
1

2
(b2κ0 − fβ), (3.12)

(g) ρ̃0 = ρ0, (3.13)

(h) ρ̃ms̃m0 = e−κ(x)
[
ρmsm0 − 1

2(1− b2)
(bmκ0 − βκm)(rm + sm)

]
, (3.14)

Proof. We prove the Lemma, part by part as follows:

(a): Let F̃ and F be two Finsler metrics on an n-dimensional manifold M .

There is a relation between the Ricci curvature R̃ic and Ric as follows [1]:

R̃ic = Ric+ (n− 2)(κ2
0 − κ0;0 − F 2κmκm)− 2F 2(κmJm)− F 2gijκi;j

−F 2(κmIm);0 − 2F 2κ0(κ
mIm) + 2F 4ImκjκkCm

jk

−F 4κjκkIj.k − F 4κjκkCs
jmCm

ks. (3.15)

From (3.15), we get

˜αRic = αRic− α2aijκi;j + (n− 2)(κ2
0 − κ0;0 − α2κmκm).

Now, we have

(b) : s̃m0 = s̃mry
r

= ãmis̃iry
r

= e−κ(x)ami[sir +
1

2
(biκr − brκi)]y

r

= e−κ(x)[smr +
1

2
(bmκr − brκ

m)]yr

= e−κ(x)[sm0 +
1

2
(bmκ0 − βκm)].
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(c) : s̃m0||m = s̃mr||myr

=

(
∂

∂xm
s̃mr + s̃irΓ̃

m
im − s̃mi Γ̃

i
rm

)
yr

= −κme−κ(x)
[
smr +

1

2
Λm
r

]
yr + e−κ(x)

[ ∂

∂xm
smr +

1

2

∂Λm
r

∂xm

]
yr

+e−κ(x)
[
sir +

1

2
Λi
r

](
Gm

im + κiδ
m
m + κmδmi − aimκm

)
yr

−e−κ(x)
[
smi +

1

2
Λm
i

](
Gi

rm + κmδir + κrδ
i
m − armκi

)
yr

= e−κ(x)

{
− κm

[
sm0 +

1

2
Λm
0

]
+

∂

∂xm
sm0 +

1

2

∂Λm
0

∂xm

+si0G
m
im + nsi0κi + si0κi − si0κi +

1

2
Λi
rG

m
imyr

+s0iκ
i +

1

2
Λi
r(nκi + κi − κi)y

r − smiG
i
rmyr − sm0κm

−1

2
Λm
i Gi

rmyr − 1

2
bmκi(κmδir + κrδ

i
m − armκi)yr

+
1

2
(biκ

mκmδir + biκ
mκrδ

i
m − biκ

marmκi)yr

}
where

Λm
r := bmκr − brκ

m, Λm
0 := Λm

r yr.

For (d), we have

(d) : t̃00 = t̃ijy
iyj

= s̃ims̃mjy
iyj

= s̃imãmr s̃rjy
iyj

=
[
sim +

1

2
(biκm − bmκi)

]
amr

[
srj +

1

2
(brκj − bjκr)

]
yiyj

=
[
sim +

1

2
(biκm − bmκi)

][
smj +

1

2
(bmκj − bjκ

m)
]
yiyj

=

[
simsmj +

1

2
(simbmκj − simbjκ

m) +
1

2
(smjbiκm − smjbmκi)

+
1

4
(biκmbmκj − biκmbjκ

m − bmκib
mκj + bmκibjκ

m)

]
yiyj

Thus

t̃00 = t00 +
1

2

(
− s0κ0 + βκmsm0 + βκmsm0 − s0κ0

)
+
1

4

(
fβκ0 − β2κmκm − b2κ2

0 + fβκ0

)
= t00 + βκmsm0 − s0κ0 +

1

2
fβκ0 −

1

4

(
β2κmκm + b2κ2

0

)
.
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Also, for (e) we obtain

(e) : t̃mm = ãmit̃im

= e−2κ(x)amit̃im

= e−2κ(x)ami

[
tim +

1

2
(−siκm − sijbmκj) +

1

2
(sjmbiκj − sjmbjκi)

+
1

4
(biκjb

jκm − biκjbmκj − bjκib
jκm + bjκibmκj)

]
.

Therefore

t̃00 = e−2κ(x)

[
tmm +

1

2
(−smκm − smκm)− 1

2
(smκm + smκm)

+
1

4
(f2 − b2κmκm − b2κmκm + f2)

]

= e−2κ(x)
[
tmm − 2smκm +

1

2
(f2 − b2κmκm)

]
.

Now, we try to obtain (f) as follows

(f) : s̃0 = s̃iy
i

= b̃j s̃jiy
i

= bj
[
sji +

1

2
(bjκi − biκj)

]
yi

= s0 +
1

2
(b2κ0 − fβ).

In order to prove (g), we have

(g) : ρ̃0 = − r̃0 + s̃0

1− b̃2

= − b̃mr̃m0 + b̃ms̃m0

1− b2

= −bm

[
rm0 − 1

2 (bmκ0 + βκm) + fam0 + sm0 +
1
2 (bmκ0 − βκm)

1− b2

]
which yields

ρ̃0 = −r0 + s0
1− b2

= ρ0.

Finally, we prove (h) as follows

(h) : ρ̃ms̃m0 = −e−κ(x)
(rm + sm)

[
sm0 +

1
2 (b

mκ0 − βκm)
]

1− b2

=
−e−κ(x)

1− b2

[
rmsm0 +

1

2
(bmκ0 − βκm)rm + smsm0 +

1

2
Λm
0 sm

]
.
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Then, we get

=
−e−κ(x)

1− b2

[
q0 + t0 +

1

2
(bmκ0 − βκm)(sm + rm)

]
= e−κ(x)

[
ρmsm0 − 1

2(1− b2)
(bmκ0 − βκm)(rm + sm)

]
.

This completes the proof. □

4. Proof of Theorem 1.1

The projective Ricci curvature of a Kropina metric is computed in [5], and

it is given at below.

Lemma 4.1. Let F =
α2

β
be a Kropina metric on an n-dimensional manifold

M . Then the projective Ricci curvature of F is given by

PRic = αRic+ (n− 2)

[
1

b2
r0;0 +

F

b2
q0 +

1

b2
s0;0 −

1

b4
(r0 + s0)

2

]
+

2

b2
q00 + (n− 1)

[ 4

F 2b4
r200 −

4

b4F
r0r00 +

F

b2
t0

]
− nF

b4
s0r

− n

b4
rr00 − Fsm0;m +

F

b2
bms0;m +

1

b2
bmr00;m − F 2

2b2
smsm

+
1

b2
(Fs0 + r00)r

m
m − F

b2
smr0m − F 2

4
tmm. (4.1)

Proof of Theorem 1.1: For F̃ , we have

P̃Ric = αR̃ic+ (n− 2)

[
1

b̃2
r̃0||0 +

F̃

b̃2
q̃0 +

1

b̃2
s̃0||0 −

1

b̃4
(r̃0 + s̃0)

2

]
+

2

b̃2
q̃00

+(n− 1)

[
4

F̃ 2b̃4
r̃200 −

4

b̃4F̃
r̃0r̃00 +

F̃

b̃2
t̃0

]
− nF̃

b̃4
s̃0r̃ −

n

b̃4
r̃r̃00

−F̃ s̃m0||m +
F̃

b̃2
b̃ms̃0||m +

1

b̃2
b̃mr̃00||m +

1

b̃2
(F̃ s̃0 + r̃00)r̃

m
m

− F̃ 2

2b̃2
s̃ms̃m − F̃

b̃2
s̃mr̃0m − F̃ 2

4
t̃mm. (4.2)

By substituting (3.7)-(3.14) into this very equation, we obtain the relation

between ˜PRic and PRic as follows

P̃Ric = PRic− α2κm
;m + (n− 2)

{
κ2
0 − κ0;0 − α2κmκm +

1

b2

[
− 1

2
(b2κ0 − fβ);0

+κ0(b
2κ0 − fβ − 2r0) +

1

2
α2

(
f2 − b2κmκm + 2rmκm

)]
+

F

b2

[1
2
(+rκ0
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−βrmκm − b2sm0κm + fs0)−
1

4
β(f2 − b2κmκm)

]
+

1

b2

[1
2
(b2κ0 − fβ);0

−κ0(b
2κ0 − fβ + 2s0)−

1

2
α2(f2 − b2κmκm − 2smκm)

]}
+

2

b2

[1
2
κ0r0

−1

2
κ0s0)−

1

2
βκm(rm0 + sm0)−

1

4
(b2κ2

0 − β2κmκm)
]
+ (n− 1)

{ 4

F 2b4

×
[
βκ0(βκ0 − 2r00) + α2f(2r00 + α2f − 2βκ0)

]
+

4

b4F

[
βr0κ0 − α2fr0

+
1

2
(b2κ0 − fβ)

(
r00 − βκ0 + α2f

)]
+

F

b2

[1
2

(
b2sm0κm − fs0 − βsmκm

)
+
1

4
(f2β − b2βκmκm)

]}
− nF

2b4
r(b2κ0 − fβ)− n

b4
(−βrκ0 + α2fr)

−F
[
(n− 3)sm0κm +

1

2
(bmκ0 − βκm);m +

(n− 3)

2
(fκ0 − βκmκm)

]
+
F

b2

[
− fs0 + βsmκm +

1

2
(b2κ0 − fβ);mbm − 1

2
b2(fκ0 − βκmκm)

]
+

1

b2

[(
2βκ0 − α2f − r00

)
f − bm(βκ0 − α2f);m −

(
2r0 − b2κ0 + 2fβ

)
κ0

+
(
2rm0κ

m + fκ0 − βκmκm
)
β
]
+

1

b2

{[
(n− 1)(Fs0 + r00)f

+
[1
2
F (b2κ0 − fβ)− βκ0 + α2f

][
rmm + (n− 1)f

]}

− F 2

2b2

[
b2κmsm +

1

4
b2
(
b2κmκm − f2

)]
− F

b2

[
fs0

−1

2

(
βκmsm − b2κmr0m + fr0 − b2fκ0

)
− 1

4
(b2βκmκm

+f2β)
]
− F 2

4

[
− 2smκm +

1

2
(f2 − b2κmκm)

]
. (4.3)

Taking P̃Ric = PRic in (4.3) and multiplying both sides by 8b4α4β2, we

obtain

A6α
6 +A4α

4 +A2α
2 +A0 = 0, (4.4)

where

A6 = 2b2β
{
(n− 2)

[
− 3b2βκmκm − f2β + 2βrmκm + 2rκ0 − 2b2sm0κm

+2fs0 + 4βsmκm
]
+ (n− 1)

[
2b2sm0κm + 2fs0 − 2βsmκm + 3βf2

−b2βκmκm + 2b2κ0f − 2b2fκ0

]
− 4b2βκm

;m + 2b2κ0r
m
m + 2βfrmm

−2b2(bmκ0 − βκm);m + (2n− 3)b2βκmκm − 8fs0 − 3βf2 − 2nrκ0

+2(b2κ0 − fβ);mbm + 4βbmf;m + 6βsmκm − 2b2κmr0m + 2fr0

−4(n− 3)b2sm0κm

}
− 4nβ2rf,
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A4 = 4β2
{
2(n− 2)b2

[
b2(κ2

0 − κ0;0)− 2κ0(r0 + s0)
]
+ 2(n− 1)

[
2β2f2

−4βfr0 + b2βκ0f + b2r00f
]
+ b2

[
− 2κ0(r0 + s0) + b2κ2

0 − 2r00f

+2βκm(rm0 − sm0)− 2bm(βκ0);m + 2βfκ0 − 2βκ0r
m
m − β2κmκm

]
+2nβrκ0

}
,

A2 = 16(n− 1)β3
[
2βr0κ0 + (b2κ0 + 3fβ)(r00 − βκ0)

]
, (4.5)

A0 = 32(n− 1)β5κ0(βκ0 − 2r00). (4.6)

Rewrite (4.4) as

(A6α
4 +A4α

2 +A2)α
2 +A0 = 0. (4.7)

The above equation shows that α2 divides 32(n − 1)β5κ0(βκ0 − 2r00). Since

α2 is irreducible and β5κ0 can factor into linear terms, we have that α2 divides

βκ0 − 2r00. Thus there exists a function c(x) such that

βκ0 − 2r00 = c(x)α2. (4.8)

Substituting (4.8) into (4.7) and by (4.5), we get

(A6α
2 +A4)α

2 =

−16(n− 1)β3
[
2βr0κ0 + (b2κ0 + 3fβ)(r00 − βκ0) + 2cβ2κ0

]
,(4.9)

which implies the following:

A6α
2 +A4 = 0,

2βr0κ0 + (b2κ0 + 3fβ)(r00 − βκ0) + 2cβ2κ0 = 0. (4.10)

Differentiating (4.8) with respect to yi yields

2cyi = biκ0 + βκi − 4ri0. (4.11)

Contracting (4.11) with bi gives

r0 =
1

4

(
b2κ0 + fβ − 2cβ

)
. (4.12)

Rewrite (4.8) as

r00 =
1

2

(
βκ0 − cα2

)
. (4.13)

Substituting (4.12) and (4.13) into (4.10), we obtain

−2fβ2κ0 + 2cβ2κ0 − cα2b2κ0 − 3cfα2β = 0. (4.14)

Differentiating (4.14) with respect to yi yields

−4fβbiκ0 − 2fβ2κi + 4cβbiκ0 + 2cβ2κi − cb2α2κi − 2cb2κ0yi

−3cfα2bi − 6cfβyi = 0. (4.15)
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Contracting (4.15) with bi gives

−4fβb2κ0 − 2f2β2 + 4cb2βκ0 + 2cfβ2 − cfb2α2 − 2cb2βκ0

−3cfb2α2 − 6cfβ2 = 0.

The above equation is equivalent to the following two equations.

−2fb2κ0 − f2β + cb2κ0 − 2cfβ = 0,

−2cfb2α2 = 0. (4.16)

From (4.16) we conclude that

f = 0, or c = 0.

Plugging c = 0 into (4.16) yields

−2fβ(2b2κ0 + fβ) = 0.

which is equivalent to

f = 0,

2b2κ0 + fβ = 0. (4.17)

Differentiating (4.17) with respect to yi yields

2b2κi + fbi = 0.

Contracting the above equation with bi, we get

3fb2 = 0. (4.18)

It follows from (4.18) that f = 0. Hence

κm = 0,

therefore κ(x)= constant. □
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