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Abstract. In this paper, we study and investigate the conformal change of
projective Ricci curvature of Kropina metrics. Let F' and F be two conformally
related Kropina metrics on a manifold M. We prove that ITI\{—l/c = PRic if and
only if the conformal transformation is a homothety.
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1. Introduction

The study of conformal geometry includes an important part of research
in Riemannian and Finsler geometry. The studies actually seek to discover
the relations between some important geometric quantities and their corre-
spondences. The conformal geometry of Riemmanian metrics have been well
studied by many geometers and has played an important role in physical the-
ories. The S curvature is a non-Riemannian quantity and play an important
role in Finsler geometry, which was introduced by Z. Shen [10]. In [11], Z.
Shen considered the projective spray G associated with a given spray G on an
n-dimensional manifold which is defined by G and its S-curvature S as

2S

G=G+—VY
n—+1

*Corresponding Author

AMS 2020 Mathematics Subject Classification: 53B40, 563C30
1



2 S. Jalili and et al

9
Oyt

ant, and it is easy to see that Ricci curvature Ric of G is given by

where Y := ¢ is vertical radial field on TM. Then G is projectively invari-

n—1

— n—1
Ric = Ric+ ——S,,,y" + ——— 82,
nt1mY (n+1)2
where ” | 7 denotes the horizontal covariant derivative with respect to Berwald

connection of G. Recently, Z. Shen defined the concept of projective Ricci
curvature for a Finsler metric F' in Finsler geometry as

PRic := Ric, (1.1)

A Finsler metric is called projective Ricci curvature if PRic = 0. The concept
of isotropic PRic curvature is defined and some conditions that implies the
Randers metric has isotropic PRic-curvature are investigated [6].

The class of (a, 8)-metrics form a special and important class of Finsler
metrics with many applications which can be expressed in the form F = a¢(s),
s = B/a, where a = a(z,y) = \/ai;(x)y'y? is a positive-definite Riemannian
metric, 3 := B(y) = b;(x)y’ is a 1-form on M and ¢(s) is a C°° positive function
on some open interval. In particular, when ¢(s) = 1+ s, the Finsler metric
F = a+ (3 is called a Randers metric and when ¢(s) = 1/s, the Finsler metric
F = o2/ is called a Kropina metric. Kropina metrics were first introduced by
L. Berwald in connection with a two-dimensional Finsler space with rectilinear
extremal and were investigated by V.K.Kropina [7].

In this class we use some notations as follows

1 1
rij = 5 (big +0ja),  sij o= 5 (bisg — by,
where 7;” denotes the covariant derivative with respect to the Levi-Civita con-
nection of a. Further, put
i . . im i . im . m
= a""rm,, ' = a""smy, r; = 0"rm;,
$j = =b"Smjs  Qij = TimS"j,  tij == SimS'],
N X) _ m 7t _ m
qj .—bqij—TmSj, tj .—btij—SmS §o

where a¥ := (a;;)~! and b® := a¥b;. We will denote
— j — j e i i )i
i = Tijyj, S50 = Sijy]7 oo = TizY Yy, ro:i=mry', so:i=siyt

In this paper, we study conformal transformation of P Ric curvature of Kropina
metrics and get the following.

Theorem 1.1. Let F and F be two conformally related Kropina metrics on a
manifold M. Then PRic = PRic if and only if the conformal transformation
is a homothety.
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2. Preliminaries

Let M be an n-dimensional C'*® manifold. Denote by T, M the tangent space
at x € M, and by TM = Uzepy T, M the tangent bundle of M. Each element
of TM has the form (x,y), where x € M and y € T, M. Let TMy, = TM\{0}.
The natural projection @ : TM — M is given by w(x,y) = x. The pull-
back tangent bundle 7*T'M is a vector bundle over T'M, whose fiber w;T'M at
v € TMy is just Ty M, where w(v) = x. Then

TM = {(w,y7v)|y € T, My, v € TIM}.

A Finsler metric on a manifold M is a function F' : TM — [0, 00) which has
the following properties:

(i) F is C* on T Moy;

(i) F(z, A\y) = AF(z,y) A > 0;

(iii) For any tangent vector y € T, M, the vertical Hessian of F?/2 given by

1
gl](xay) = |:2F2:| )
yiyd
is positive definite.

Let x € M and F,, := F|r,p. To measure the non-Euclidean feature of F,
one can define Cy : T, M x T, M x T, M — R by

Cy(u,v,w) := %% [gyﬂw(u,v)}tzo, u,v,w € T, M.
The family C := {C,} e, is called the Cartan torsion. It is well known that
C =0 if and only if F' is Riemannian.
For y € T, My, define I, : T, M — R by

n

Ly (u) := Z 9" (y)Cy(u, 0i, 0)),

i=1
where {0;} is a basis for T, M at x € M. The family I := {I, },ern, is called
the mean Cartan torsion. By definition, I,(y) = 0 and I, = A7'L,, A > 0.
Therefore, I, (u) := I;(y)u’, where I; := g/FCjy.

For a Finsler metric F' = F(z,y) on a manifold M, its geodesics are charac-
terized by the system of differential equations

é+2G(¢) =0,

where the local functions G* = G*(x,y) are called the spray coefficients and
are given by

G' = Zg l{[F2]w’€ylyk - [F2]wl}a

where y € T, M and (¢"7) := (g;;) "
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The Riemann curvature R, = R} 52 ® da* of F is defined by
i 2vi 2vi i 9
0 PG PG 060w
oxk  Oxidyk Oyioyk  Oyi Oyk
When F(z,y) = \/a;j(z)y’y’ is a Riemannian metric,
Rik = Rijkl(l“)yjyl,

Rik =

where R! j w1 (z) denotes the coefficients of the usual Riemannian curvature ten-
sor. Thus, the quantity R, in Finsler geometry is still called the Riemann
curvature.

The Ricci curvature Ric is defined by

Ric := R';.
By definition, the Ricci curvature is a positively homogeneous function of degree
twoiny € TM.
For a Finsler metric F, the Busemann—Hausdorff volume form dVgy :=
opu(z)wt A+ Aw™, is defined by
Vol(B™(1))
OBH = - -
Vol{(y) € R" | Ple,y' s

D}

Here Vol{.} denotes the Euclidean volume function and B"(1) denotes the unit
ball on R™. When F(z,y) = \/g:j(x)y*y’ is a Riemannian metric, then

opr(x) = \/det(gi;)-

There is a notion of distortion 7 = 7(z, y) on T M associated with the Busemann

Hausdorff volume form
dVeg = O'BH(Z')wl A A",

i.e.

7(z,y) :=1n l
The S—curvature is defined by

S(z,y) == %[T(C(t),é(t))} leo,

where ¢(t) is the geodesic with ¢(0) = z and ¢(0) = y. From the definition,
we see that the S-curvature measures the rate of change of the distortion on
(T, M, F,) in the direction y € T, M. For a Finsler metric F', the S-curvature
is given by following:

det(gmx,y))] |

O'BH(:E)

oG™

S:ayim

- ym&% [hl UBH]. (2.1)
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3. Some Fundamental Lemmas

An («, B)-metric can be expressed in the form F' = a¢(s),s = 8/a, where
a = a(z,y) = \/a;j(x)y'y? is a Riemannian metric, 3 := B(y) = b;i(z)y’ is a 1-
form on M, and ¢(s) is a C'™ positive function on some open interval [4][9]. In
particular, when ¢(s) = 1+ s, the Finsler metrics F' = o+ 3 is called Randers
metrics, which were introduced and studied by Randers. If ¢(s) = 1/s, the
Finsler metric F = o?/3 is called a Kropina metric. Kropina metrics were
first introduced by Berwald in connection with a two-dimensional Finsler space
with rectilinear extremal and were investigated by Kropina.

By a conformal change F = ¢#(*) F various quantities are changed as follows:

a= en(aﬂ)a7 B _ em(m)ﬁ.
Let & = \/ai;y'y7 and B = b;(z)y’. Then
a”ij = e2n(x)aija @l = e—2f@(x)aij7 b~i = e"‘(“’)bi’ [;i — e—n(x)bi.

Further, we have [3]

iy = ) (biyj — bjki + faiz), (3.1)
where ZNJiH ; denote the covariant derivative of b; with respect to & and
f=b0"kmn.
From (3.1), we get
5i; = @ [sij + %(bmj — bj/fi)], (3.2)
Fiy = @ [rij - %(bmj +bjK;) + faij}. (3.3)

The following holds.

Lemma 3.1. [1] Let F and F be two Finsler metrics on an n-dimensional
manifold M. If F = e"*) F| then the relation between the geodesic coefficients
G' and G* is given by

~ , .2
G'=G"+ Rkoy' — 7#, (3.4)
where k' = g x;. Further, we have
G'; = G+ nry' + kodt —y;k', (3.5)

C?ijk = Gijk + nj5ik + mﬁé — gjkﬁi. (3.6)
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Lemma 3.2. Let F and F be two (o, §)-metrics on an n-dimensional manifold
M. If F = e"®F, then

(a) & Ric = ®Ric — ?a" ki + (n = 2) (kg — Koymy™ — &k k™) (3.7)

(b) 57 =er@) {57’5 + %(bmlio - ﬁnm)}, (3.8)

1
(€) §"0m = e " [Sn(l);m +(n—3)s"gkm + §(bm’€0 = BE")im

22 (g - /snmm] , (39

(d)  too = too + Brms"™y — soko + %fﬁﬁo — i(ﬂ%ﬁmn’” + 62,%(2))7 (3.10)

(e) Im = e 2@ {tmm — 25, K™ + %(f2 . bzlimlim):|, (3.11)

(F) 0= s0+ 570 F5), (312)

(9)  Po = po, (3.13)
1

(h) ﬁmggn = e @) {pmsom - b ko — Bﬁm)(rm + Sm)} ) (3'14)

2a =

Proof. We prove the Lemma, part by part as follows:

(a): Let F and F be two Finsler metrics on an n-dimensional manifold M.
There is a relation between the Ricci curvature Ric and Ric as follows [1]:

Ric = Ric+ (n—2)(k3 — Koo — F2kmk™) — 2F2(K™Jp) — F2gY kyj
—F?(K™Im)i0 — 2F ko (K™ L) + 2F* 1, k7 6F O
~F*IRRT F4ﬁjﬁijmC;’;. (3.15)

From (3.15), we get
aRic = “Ric — a2a7 ki + (n — 2) (K3 — Ko — A2 Kmk™).

Now, we have

05 = &y
= dmigiryr

) 1
= e "@gmifs,, + 5 (biker = brki)]y"
—k(x m ]. m m ‘s
= el )[Sr+§(b Kr —bek™)]y

1
= e r@ [s"6 + i(bmmo — BE™)].
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where

For (d), we have

(d) : 'EOO

Thus

too
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~m T
s r||my

D) . _
( LN v é"zr:«m) g
ox™

- K(:L’)|: m - m:| r K(x) |:7 m - r :| r
K€ sr+2Ar y +e - 3T+2 . Yy

) 1 .
4ot i A (67 i 4 R — 0™

1 . ] . .
LTV

0 m+13A6“
&cms 07 2 9gm

1
e“(m){ — Km [3"8 + §A6“} +
, , . , 1 .
+5' G s gk + 8" gk — "ok + iAiG”ZmyT
1 _
+5% K%+ §A§,(n/<;i + ki — k)Y — TGy — SThEm

1 ; 1 i i i, 7
—iAg"GZTmyT - §bm/~ei(/€m5 »+ Er0y, — armK)Y

1 . . _
+§(bmmmm§lr + bik™ K0, — binmarmlil)yr}

A =0k, — bk, AJ =AY
fijyillj
Sim3Ty'y
Simd™ 51y’
1 mr 1 1,9
[sim + §(bmm — bmﬁi)}a [Srj + i(brﬁj — bjmr)]y Y
1 1 o
[sim + §(bmm — bmlii)} [s"} + §(bm;<;j - bj/{m):| yiy)

1 1
SimSW; + i(simbmﬁj — Simbj,‘{;m) + §(Sn;bil€m — ST;L‘bmlii)

>~ =

+—(bikmb ™k — Dikmbi K™ — by kb K + bmﬂibjﬂm)] yly?

1

too + 5( — Soko + Bkms’y + BEms"y — SOKJO)
1

5 (FBro — B2hmK™ — VK3 + [Bro)

1 1
too + BEms™y — Soko + Efﬂ/io ~1 (ﬂznmﬁm + b2/<;(2)).
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Also, for (e) we obtain

(e): 1", =
Therefore
top =

~miy
a tim
e—QK(IL‘) A" i

—2n(m)ami

1 . 1 . .
e tim + 5(—Si/’€m — Sijbmﬁj) + i(sjmbiﬁj — S]mbj/ﬂ)

+Z(b¢1€jb‘]/€m — bilﬁjbm:‘i‘] — bj/iib‘]/‘{/m + bjliibm:‘i‘])‘| .

1 1
e 2k(@) [ygm 4 5(—sm,‘$m — SpK™) — i(smmm + Smk™)

1
+Z(f2 — U kK™ = VPR k™ + f?)

1
e~ 26(x) {tTr;n — 25, K™+ §(f2 N bQIimlim)]

Now, we try to obtain (f) as follows

which yields

(f):5 = 5y
= ngjiyi

1 .
= Sji + i(bjlii - bi"{j)} yl

= S0+ %(bz/‘éo - fB).

7o + So

1—b2

_bmf 0—&-6 Sm0

1— b2
_pm Tmo — %(meO + ﬁ/@m) + famO + Sm0 + %(bm"{O - ﬁ"im)
1— b2

. _Totso
po = 1—12

= po-

Finally, we prove (h) as follows

(h) : sy’

(Pm =+ Sm) [s"é + %(bmno — BK™)
1—102

—r(z)

= —€

_e—f@(x) m 1 m m m 1 m
= ﬁ[rmso—i—g(b Ko — Bk )Tm+8m80+§/\0 Sm| -
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Then, we get
—e— (@) 1, ”
= 1_7[)2[q0—|—t0—|—§(b ko — Bk )(sm—i—rm)]
—R(T m 1 m m
= e oy - Sy Vo — R + sm)|.
This completes the proof. (Il

4. Proof of Theorem 1.1
The projective Ricei curvature of a Kropina metric is computed in [5], and
it is given at below.

2
@
Lemma 4.1. Let F = — be a Kropina metric on an n-dimensional manifold

M. Then the projective Ricci curvature of F is given by

. PR 1 F 1 1
PR'LC = R'LC + (TL — 2) |:b2'l"();0 + b72q0 + b7280;0 — bj('l"() —+ 50)2:|
2 4 4 F nF
gt (1= 1) et = gigroro + to] — Grsur
n F 1 F?
7[)747”,“00 — F.Sna;m =+ b—QbmSO;nl + bjbmroo;m — @SmSm
1 F F?
—|—b—2(Fso +roo)r"y, — b—QsmTOm — Tt”fn. (4.1)
Proof of Theorem 1.1: For F, we have
—~— et 1 F_ 1. 1, 2 _
PRic = “Ric+ (n—2) L;QTOHO + E*QQO + ITQSOHO - 6*4(7“0 +350)%| + 6*2%0
4 4 _ . ﬁ'{ nF_ _ n__
) | g oo~ g oTo0 o | T = oo
om F~m~ 7 Lo~ =~ \=m
—Fs 0[|m + ﬁb 50||m + =b T00||m + E?(FSO + 7’00)7" m
2 F_ F?_
,2825 S — 5—25 Tom — Tt foiey (4.2)

By substituting (3.7)-(3.14) into this very equation, we obtain the relation
between PRic and PRic as follows

— 1
PRic = PRic — a%% +(n— 2){/4:(2) — Koo — PR kE™ + B [ -

1 Frl
+ro(bPRo — fB — 2r) + 5042 (f2 — b2l ™ + 2rm/<;m)} + 5 [§(+rno
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~Brmn™ — s + fs0) = 7807~ Prons™)] + oz [ 300 — B0

1 2

—no(bQ,‘{O — fB+2s0) — §a2(f2 — VPR ™ — 2Sm:‘€m):|} + = 02
1 1. .. 1 m 4

_514}080) — §ﬁ/€ (rmO + Smo) - 1(()2/{/3 — 62I{ml€ )j| + (TL — 1){F2b4

X [5ﬂo(ﬂl€0 — 27‘00) + Oézf(QT()() + Ozzf — Qﬂﬂo)] + l)‘liF |:ﬂ7"01€0 — Ozszo

1
{ KoTo

‘*’l(b%o — [B)(ro0 — Bro + a2f)} F { (b*s"6km — S0 — Bsmk™)

2 b2
+i(f2ﬁ — bzﬁlim/im)}} — Q—b}::r(b2ffo —fB)— :—4(—57%0 + o fr)
[0 8)s7hen 2 (670 — B+ ; D (fr0 — ™)
T P+ Bsnn™ 4 5 (B0 — F8),,6™ — S0(fho — Brus™]

e
+bl2 [(2550 —a?f— roo) f — b™(Bro — &2 f)im — (2ro — b2 ko + 2fB) ko
Jr(27’m0"5m + fro — @ﬁm’fm)ﬂ} + 1)12{ [(” —1)(Fso +roo)f

5 F (R0 — 78) — Bro + 02 f] [ + (n — 1] }

F? F
5 [bz m izﬂ (b2ki ™ — fz)] -5 [fso
—l(ﬂnmsm — V2o + fro — b2fH0) — i(b2ﬂnmmm
2
fQﬁ)] [ 28k + 2(f2 — bQHmnm)}. (4.3)

Taking PRic = PRic in (4.3) and multiplying both sides by 8bv*a?3?, we
obtain

Aga® + Asa* + Asa® + Ay =0, (4.4)
where
A = 2b26{(n —2) { — 362 Bl k™ — 2B + 287 K™ + 2rkg — 2675 ki

+2fso + 4Bsmfﬁm] +(n-1) [2()25 Yhm + 2f80 — 208, k™ + 3B f?
—b? Bl k™ + 26% ko f — 2b2f,‘i0] — 4b25/i + 202 kor™, + 2Bfr™
—20%(b" kg — BE™ )im + (20 — 3)b? B k™ — 8fs0 — 3Bf% — 2nrKg
+2(b% kg — fB)mb™ + ABY™ fun + 685, K™ — 202K ™0y + 2fT0
—4(n — 3)b%s Omm} — 4nB?rf,
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Ay = 462{2(71 —2)b? [bz(/@g — Ko.0) — 2Ko(To + so)} +2(n—1) [262f2
4B 10+ VBrof + V10 f| + b2 | = 2w0(ro + s0) + bk — 2700

+26"€m(rm0 - SmO) - Qbm(ﬂHO);m + 26.)0’%0 - 2BKOT% - ﬁ2ﬁm“mi|

—|—2n,@r1~€0},
Ay = 16(n—1)3 {mrm + (bk0 + 3£8) (o0 — 550)}7 (4.5)
Ay = 32(n—1)B%ko(Bro — 2roo). (4.6)

Rewrite (4.4) as
(A6a4 + A40{2 + AQ)O{Q + Ag = 0. (47)

The above equation shows that o? divides 32(n — 1)38%ko(B8ko — 2rgo). Since
a? is irreducible and 3%k can factor into linear terms, we have that o2 divides
Bro — 2rgo. Thus there exists a function ¢(x) such that

Bro — 2rop = c(x)a’. (4.8)
Substituting (4.8) into (4.7) and by (4.5), we get
(Aga® + Ay)a? =
—16(n — 1)8%|2B8roko + (ko + 3B) (o0 — Bro) + 2¢8%Ko | (4.9)

which implies the following:

Aga® + Ay =0,
2Broko + (b2ko + 3fB)(roo — Bro) + 2¢8%ko = 0. (4.10)
Differentiating (4.8) with respect to y yields
2¢y; = biko + Br; — 4rip. (4.11)
Contracting (4.11) with b® gives
ro = i(b%o . w). (4.12)
Rewrite (4.8) as
00 = %(550 — ca2). (4.13)
Substituting (4.12) and (4.13) into (4.10), we obtain
—2f %Ko + 2¢%kg — ca®b? ko — 3cfaB = 0. (4.14)

Differentiating (4.14) with respect to y* yields
—4fBbiko — 2f B2k + 4cBbikg + 2¢6%k; — cb® ki — 2cb%Koy;
—3cfa’b; — 6efBy; = 0. (4.15)



12

S. Jalili and et al

Contracting (4.15) with b® gives

—4fBb% ko — 2f25% + 4cb?Bro + 2¢f B2 — cfb a® — 2cb*Brg
—3cfb?a? —6efp? = 0.

The above equation is equivalent to the following two equations.

—2fb%kg — 2B + cb®ko — 2¢fB =0,
—2cfb*a® = 0. (4.16)

From (4.16) we conclude that

f=0, or c=0.

Plugging ¢ = 0 into (4.16) yields

—2fB(20%k + fB) = 0.

which is equivalent to

f=0,
2b%ko + fB = 0. (4.17)

Differentiating (4.17) with respect to y° yields

2b2,‘ii + fb; = 0.

Contracting the above equation with b?, we get

3fb* =0. (4.18)
It follows from (4.18) that f = 0. Hence
Km =0,
therefore k(z)= constant. O
REFERENCES
1. S. Bécs6 and X. Cheng, Finsler conformal transformations and the curvature invari-

ances, Publ. Math. Debrecen, 70(2007), 221-231.

. X. Cheng, Y. Shen, and X. Ma, On a class of projective Ricci flat Finsler metrics,

Publ. Math. Debrecen. 7528(2017), 1-12.

. X. Cheng and Z. Shen, Finsler Geometry: An Approach via Randers Spaces,

Springer, 2012.

. K. Kaur and G. Shanker, On the geodesics of a homogeneous Finsler space with a

special (o, B)-metric, Journal of Finsler Geometry and its Applications, 1(1) (2020),
26-36.

. X. Cheng, X. Ma and Y.Shen , On Projective Ricci Flat Kropina Metrics, Journal

of Mathematics, 37(4) (2017), 705-713.

. L. Ghasemnezhad, B.Rezaei and M.Gabreni, On isotropic projective Ricci curvature

of C-reducible Finsler metrics, Turkish Journal of Mathematics, 43(3) (2019), 1730-
1741.

. V. K. Kropina, On projective two-dimensional Finsler spaces with a special metric,

Trudy Sem. Vektor. Tenzor. Anal. 11(1961), 277-292.



10.

11.

12.

13.

On conformal change of projective Ricci curvature of Kropina metrics 13

. V.K. Matsumoto, On projective two-dimensional Finsler spaces with a spectal metric,

Trudy Sem. Vektor. Tenzor. Anal., 11(1961), 277-292.

. H. Sadeghi, A special class of Finsler metrics, Journal of Finsler Geometry and its

Applications, 1(1) (2020), 60-65.

Z. Shen, Volume comparison and applications in Riemann-Finsler geometry, Ad-
vances in Math. 128 (1997), 306-328.

Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Pub-
lishers, 2001.

A. Tayebi and T. Tabatabaeifar, Matsumoto metrics of reversible curvature, Acta
Mathematica Academiae Paedagogicae Nyiregyhaziensis., 32(2016), 165-200.

X. Zhang and Y. Shen, On Einstein Matsumoto metrics, arXiv:math/1207.1944v1
[math.DG] 9 Jul 2012.

Received: 23.04.2021
Accepted: 11.10.2021



