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Abstract. In this paper, we study the Matsumoto change of m-th root Finsler

metric. We find the necessary and sufficient conditions under which the trans-

formed metric be locally dually flat. Also, we prove that for Matsumoto

change of m-th root metric is locally projectively flat if and only if it is lo-

cally Minkowskian.
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1. Introduction

The Matsumoto metric is an important and interesting Finsler metric, which

is realization of Finsler’s idea of a slope measure of a mountain with respect

to a time measure ([7] and [11]). If α =
√
aijyiyj is a Riemannian metric on

Earth’s surface and β = biy
i is a one form, depends on Earth’s gravity then

Matsumoto metric F is defined by

F (x, y) =
α2(x, y)

α(x, y)− β(x, y)
.
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A β-change F̄ of Finsler metric F , is defined as F̄ (x, y) = f(F, β), where f(F, β)

is a positively homogeneous function. We discuss a special β− change, as

F̄ =
F 2

F − β
,

known Matsumoto change. In particular, if F is a Riemannian metric, then F̄

becomes to Matsumoto metric F = α2

α−β .

The theory of m-th root metrics has been developed by H. Shimada ([10])

and applied to Biology as an ecological metric and studied by many authors

([9], [12], [13] and [14]). It is regarded as a direct generalization of the theory

of Riemannian metric in the sense that the second root metric is a Riemannian

metric. The third and fourth root metrics are called the cubic metric and

quartic metric, respectively. Recently studies show that the theory of m-th

root Finsler metrics play a very important role in physics, theory of space-time

structure, gravitation, general relativity and seismic ray theory.

Suppose F = m
√
A be m-th root metric, as A is given by

A := ai1i2...im(x)yi1yi2 ...yim

with ai1...im symmetric in every indices. Let us put

Ai =
∂A

∂yi
, Axi =

∂A

∂xi
, A0 = Axiyi, A0l = Axiylyi, Aij =

∂2A

∂yi∂yj
,

and

Bi =
∂B

∂yi
, Bxi =

∂B

∂xi
, B0 = Bxiyi, B0l = Bxiylyi.

In information geometry on Riemannian manifolds, Amari and Nagaoka [1]

proposed concept of locally dually flat Riemannian metrics. In [9], Shen en-

hanced concept of locally dually flatness. In [12], Tayebi-Najafi proved for

locally dually flat and Antonelli m-th root metrics. Nowdays, A. Tayebi et.al.

[14], studied Kropina change for locally dually flat.

In this paper, we prove the following.

Theorem 1.1. Let F = m
√
A be an m-th root metric on open subset U ⊂ Rn,

where A is irreducible. Suppose that F̄ = F 2/(F − β) is the Matsumoto change

of F . Then F̄ is locally dually flat if and only if there exists a 1-form θ = θl(x)y
l

such that the following hold

Axl =
1

3m

[
mAθl + 4θAl

]
, (1.1)

4AβlA0 −
( 9

m
− 1

)
A

1
mAlA0 −A

1
m+1A0l + 4AAlβ0 +mA2β0l

+2A
1
m+1Axl = 2mA2βxl , (1.2)

1

m
A

2
mA0Al − βlA

1
m+1A0 −A

1
m+1Alβ0 +mA2β0βl = 0, (1.3)
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where

β0 = βxiyi, β0l = βxkylyk, βxl = (bi)xlyi.

Distance functions induced by a Finsler metrics are regarded as smooth ones.

The Hilbert Fourth Problem in the smooth case is to characterize Finsler met-

rics on an open subset in Rn whose geodesics are straight lines. Such Finsler

metrics are called projectively flat Finsler metrics or briefly projective Finsler

metrics. G. Hamel first characterizes projective Finsler metrics by a system of

PDE’s [4]. Later on, A. Rapcsák extends Hamel’s result to projectively equiv-

alent Finsler metrics [8]. In this paper, w we consider the Matsumoto change

of an m-th root metric such that the transformed metric is locally projectively

flat. Then we prove the following.

Theorem 1.2. Let F = m
√
A be an m-th root metric on open subset U ⊂ Rn,

where A is irreducible. Suppose that F̄ = F 2/(F − β) is the Matsumoto change

of F . Then F̄ is locally projectively flat if and only if it is locally Minkowskian.

2. Preliminaries

Let M is n-dimensional C∞-manifold. The tangent space at x ∈ M are

given by TxM and tangent bundle of M denoted by TM :=
∪

x∈M TxM. Ev-

ery element of TM is of the form (x, y), where x ∈ M and y ∈ TxM. Let

TM0 = TM \ {0} .

Definition: A metric is a function F : TM → [0,∞) on M with following

properties:

(i) F is C∞ on TM0,

(ii) F is positively 1-homogeneous on TM and

(iii) the Hessian of F 2/2 with components

gij =
1

2

∂2F 2

∂yi∂yj

is positive definite on TM0. The pair F
n = (M,F ) is said to be a Finsler space

of dimension n. F is said fundamental function and tensor g with components

gij is said fundamental tensor of Finsler space Fn.

The normalized element li and angular metric tensor hij are defined, respec-

tively as:

li =
∂F

∂yi
, hij = F

∂2F

∂yi∂yj
.

Locally, geodesics of a metric are given by

d2xi

dt2
+ 2Gi(x,

dxi

dt
) = 0,
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where

Gi =
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
are called spray coefficient.

For a non-zero vector y ∈ TxM0, the Riemann curvature is a family of linear

transformation Ry : TxM → TxM with homogeneity Rλy = λ2Ry, ∀λ > 0

which is defined by Ry(u) := Ri
k(y)u

k ∂
∂xi , where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

For a flag P := span{y, u} ⊂ TxM with flagpole y, the flag curvature K =

K(P, y) is defined by

K(x, y, P ) :=
gy

(
u,Ry(u)

)
gy(y, y)gy(u, u)− gy(y, u)2

.

The flag curvature K(x, y, P ) is a function of tangent planes P = span{y, v} ⊂
TxM . This quantity tells us how curved the space is at a point. If F is a

Riemannian metric, K(x, y, P ) = K(x, P ) is independent of y ∈ P \ {0}. Thus
the flag curvature in Finsler geometry is a natural extension of the sectional

curvature in Riemannian geometry.

A metric F is said to be locally dually flat if,

F 2
xkyly

k = 2F 2
xl .

A metric is called Berwald metric, if spray coefficients Gi are quadratic. A

metric F (x, y) is called locally projectively flat if its geodesic coefficients Gi

given as Gi(x, y) = P (x, y)yi, where P : TU = U × Rn → R is homogeneous

(positively) of degree one in y, that is P (x, λy) = λP (x, y), λ > 0 [5]. Here P

is projective factor.

A metric is called locally projectively flat if, the geodesics are straight lines.

A metric F = F (x, y) is projectively flat on U ⊂ Rn if and only if

Fxtylyt − Fxl = 0.

3. Proof of Theorem 1.1

For proving theorem, we need the following lemma:

Lemma 3.1. [14] Suppose that the following equation holds

Ω
{
A

1
m − β

}3

+Φ
{
A

1
m − β

}2

+ ζ
{
A

1
m − β

}
+∆ = 0,

where Ω, Φ, ζ, ∆ are polynomials in y and m > 2. Then

Ω = Φ = ζ = ∆ = 0.
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Proof. Suppose F̄ is locally dually flat. The following holds

F̄ 2 =
F 4

(F − β)2
,

Thus we get

(F̄ 2)xk =

[
A

4
m

(A
1
m − β)

2

]
xk

= − 1

(A
1
m − β)

3

[
2

m
A

5
m−1Axk − 2A

4
m βxk

]

+
4

m

A
4
m−1Axk

(A
1
m − β)

2

Also, we have

(F̄ 2)xkylyk =
4

m(A
1
m − β)

2

[( 4

m
− 1

)
A

4
m−2AlA0 +A

4
m−1A0l

]

− 8

m(A
1
m − β)

3

[
1

m
A

5
m−2A0Al −A

4
m−1A0βl

]

− 2

(A
1
m − β)

3

[
1

m

( 5

m
− 1

)
A

5
m−2AlA0 +

1

m
A

5
m−1A0l

− 4

m
A

4
m−1Alβ0 −A

4
m β0l

]
+

6

(A
1
m − β)

5

[
1

m2
A

6
m−2A0Al

− 1

m
A

5
m−1

(
A0βl +Alβ0

)
+A

4
m β0βl

]
.



36 Manoj Kumar

Therefore, we obtain the following

(F̄ 2)xkylyk − 2(F̄ 2)xl =
4

m(A
1
m − β)

2

[
(
4

m
− 1)A

4
m−2AlA0 +A

4
m−1A0l

]
− 8

m(A
1
m − β)

3

[
1

m
A

5
m−2A0Al −A

4
m−1A0βl

]

− 1

(A
1
m − β)

3

[
2

m
(
5

m
− 1)A

5
m−2AlA0 +

2

m
A

5
m−1A0l

− 8

m
A

4
m−1Alβ0 − 2A

4
m β0l

]

+
6

(A
1
m − β)

5

[
1

m2
A

6
m−2A0Al +A

4
m β0βl

− 1

m
A

5
m−1 (A0βl +Alβ0)

]
− 8

m

A
4
m−1Axl

(A
1
m − β)

2

+
4

(A
1
m − β)

3

(
1

m
A

5
m−1Axl −A

4
m βxl

)
.

Thus (F̄ 2)xkylyk − 2(F̄ 2)xl = 0 implies that

(A
1
m − β)

3
[
4

m
(
4

m
− 1)A

4
m−2AlA0 +

4

m
A

4
m−1A0l −

8

m
A

4
m−1Axl

]
+(A

1
m − β)

2
[
− 8

m2
A

5
m−2AlA0 +

8

m
A

4
m−1βlA0 −

2

m
(
5

m
− 1)A

5
m−2AlA0

− 2

m
A

5
m−1A0l +

8

m
A

4
m−1Alβ0 + 2A

4
m β0l +

4

m
A

5
m−1Axl − 4A

4
m βxl

]
+

1

m2
A

6
m−2AlA0 −

1

m
A

5
m−1A0βl −

1

m
A

5
m−1Alβ0 +A

4
m βlβ0 = 0. (3.1)

By Lemma 3.1, the relation (3.1) implies that(
4

m
− 1

)
AlA0 +AA0l − 2AAxl = 0, (3.2)

4AβlA0 −
( 9

m
− 1

)
A

1
mAlA0 −A

1
m+1A0l + 4AAlβ0 +mA2β0l

+2A
1
m+1Axl − 2mA2βxl = 0, (3.3)

1

m
A

2
mA0Al − βlA

1
m+1A0 −A

1
m+1Alβ0 +mA2β0βl = 0. (3.4)

(3.2) can be rewrite as follows

A (2Axl −A0l) =

(
4

m
− 1

)
A0Al. (3.5)
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Since Deg(Al) = m−1, then by irreducibility of A, there exist a 1-form θ = θly
l

such that

A0 = θA. (3.6)

From definition of A0, we write

Axiyi = θA. (3.7)

Differentiating (3.7) with respect to l implies that

Axiylyi +Axiδil = θlA+Alθ

or equivalently

A0l = θlA+Alθ −Axl . (3.8)

Further, substituting (3.6) and (3.8) in (3.5) yields (1.1). The converse is

obvious. This completes the proof. □

4. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. In order to prove Theo-

rem 1.2, we need the following.

Proposition 4.1. Let F = m
√
A be an m-th root metric on open subset U ⊂ Rn,

where A is irreducible. Suppose that F̄ = F 2/(F − β) is the Matsumoto change

of F . If F̄ is a projectively flat metric, then it is reduced to a Berwald metric.

Proof. Suppose F̄ is a projectively flat metric. We have

F̄ =
F 2

F − β
.

Thus

(F̄ )xk =

[
A

2
m

(A
1
m − β)

]
xk

=
2

m

A
2
m−1Axk

(A
1
m − β)

− 1

(A
1
m − β)

2

[
1

m
A

3
m−1Axk −A

2
m βxk

]
.

We have

(F̄ )xkylyk =
2

m(A
1
m − β)

[
(
2

m
− 1)A

2
m−2AlA0 +A

2
m−1A0l

]
− 2

m(A
1
m − β)

2

[
1

m
A

3
m−2A0Al −A

2
m−1A0βl

]
− 1

(A
1
m − β)

2

[
1

m
(
3

m
− 1)A

3
m−2AlA0 +

1

m
A

3
m−1A0l −

2

m
A

2
m−1Alβ0 −A

2
m β0l

]
+

2

(A
1
m − β)

3

[
1

m2
A

4
m−2A0Al −

1

m
A

3
m−1 (A0βl +Alβ0) +A

2
m β0βl

]
.
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Therefore, we obtain

(F̄ )xkylyk − (F̄ )xl =
2

m(A
1
m − β)

[
(
2

m
− 1)A

2
m−2AlA0 +A

2
m−1A0l

]
− 2

m(A
1
m − β)

2

[
1

m
A

3
m−2A0Al −A

2
m−1A0βl

]
− 1

(A
1
m − β)

2

[
1

m
(
3

m
− 1)A

3
m−2AlA0 +

1

m
A

3
m−1A0l −

2

m
A

2
m−1Alβ0 −A

2
m β0l

]
+

2

(A
1
m − β)

3

[
1

m2
A

4
m−2A0Al −

1

m
A

3
m−1 (A0βl +Alβ0) +A

2
m β0βl

]

− 2

m

A
2
m−1Axl

(A
1
m − β)

+
1

(A
1
m − β)

2

(
1

m
A

3
m−1Axl −A

2
m βxl

)
.

Then (F̄ )xkylyk − (F̄ )xl = 0 implies that

(A
1
m − β)

2
[
(
2

m
− 1)

2

m
A

2
m−2AlA0 +

2

m
A

2
m−1A0l −

2

m
A

2
m−1Axl

]
+(A

1
m − β)

[
− 2

m2
A

3
m−2AlA0 +

2

m
A

2
m−1βlA0 −

1

m
(
3

m
− 1)A

3
m−2AlA0

− 1

m
A

3
m−1A0l +

2

m
A

2
m−1Alβ0 +A

2
m β0l +

1

m
A

3
m−1Axl −A

2
m βxl

]
+

1

m2
A

4
m−2AlA0 −

1

m
A

3
m−1A0βl −

1

m
A

3
m−1Alβ0 +A

2
m βlβ0 = 0. (4.1)

By Lemma 3.1, the relation (4.1) yields(
2

m
− 1

)
AlA0 +AA0l −AAxl = 0, (4.2)

2AβlA0 −
( 5

m
− 1

)
A

1
mAlA0 −A

1
m+1A0l + 2AAlβ0 +mA2β0l

+A
1
m+1Axl = mA2βxl , (4.3)

1

m
A

2
mA0Al − βlA

1
m+1A0 −A

1
m+1Alβ0 +mA2β0βl = 0. (4.4)

We have Deg(Al) = m−1 < deg(A). From (4.2), the irreducibility of A implies

that A divides A0. Therefore there exists a 1-form θ = θly
l such that

A0 = 2mAθ.

A simple fact is that a Finsler metric F = F (x, y) on an open subset U ⊂ Rn is

projectively flat if and only if the spray coefficients are in the form Gi = Pyi.

It is equivalent to the following Hamel equation Fxmykym = Fxk . In this case,

we have

P =
Fxmym

2F
.
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Thus

P =
2mAθ

2A
= θ.

Then

Gi = Pyi = θyi

which means that metric F is a Berwald metric. □

Now, we are going to prove Theorem 1.2. For this aim, we need the following.

Lemma 4.2. [3] Every Berwald metric with vanishing flag curvature K = 0 is

a locally Minkowskian metric.

Proof of Theorem 1.2: By Proposition 4.1, if the Finsler metric F = F (x, y)

is projectively flat, then it becomes Berwald metric. Let K ̸= 0. By Numata

theorem, every Berwald metric with non zero scalar flag curvature K should

be Riemannian. This contradicts with our assumption. Therefore, K = 0. By

Lemma 4.2, the Finsler metric F reduces to a locally Minkowskian metric. This

is the proof of Theorem 1.2. □
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