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Abstract. Let (M, F) be a Finsler manifold and G be the Cheeger-Gromoll
metric on 7'M induced by F. We show that the curvature tensor field of the
Levi-Civita connection on (TM,G) is determined by the curvature tensor field
of Vranceanu connection and some adapted tensor fields on TM. Then we
prove that (f]\vl , @) is locally symmetric if and only if (M, F) is locally Eu-
clidean. Also, we obtain the flag curvature of the Finsler manifold (M, F').
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1. INTRODUCTION

The geometry of the tangent bundle TM of a Riemannian manifold (M, g)
goes back to Sasaki, who constructed a natural Riemannian metric G on TM
[19]. Several papers have been made on interrelations between the geometries
of (M,g) and (TM,G) (see [2, 3, 4,7, 8,9, 10, 21]). In [16], Peyghan, Tayebi
and Zhong Proved that (i) Finslerian manifold (M, F) is a Landsberg manifold
if and only if the vertical foliation Fy is totally geodesic in (T'M — {0}, G);
(ii) letting @ := a(7) be a positive function of 7 = F? and k, ¢ be two positive

numbers such that ¢ = then (M, F) is of constant curvature k if and

2
k(14a)’
only if the restriction of G on the c—indicatrix bundle IM(c) is bundle-like for
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the horizontal Liouville foliation on I M (¢), if and only if the horizontal Liouville
vector field is a Killing vector field on (IM(c), G), if and only if the curvature-
angular form A of (M, F) satisfies A = 15%R on IM(c). Also in [17], they
introduced a class of g—natural metrics G, on the tangent bundle of a Finsler
manifold (M, F) which generalizes the associated Sasaki—Matsumoto metric
and Miron metric. They obtained the Weitzenbock formula of the horizontal
Laplacian associated to G, which is a second-order differential operator for
general forms on tangent bundle. Using the horizontal Laplacian associated to
Ga.p, they gave some characterizations of certain objects which are geometric
interest (e.g. scalar and vector fields which are horizontal covariant constant)
on the tangent bundle. Furthermore, Killing vector fields associated to G, ; are
investigated. Tayebi and his collaborators have been studied on interrelations
between the geometries of (M, g) and (TM,G) [11, 12, 13, 14, 15, 18]. Also,
Wu, Bejancu and Farran generalized some results to the case of Finsler manifold
(for more details see [5, 6, 22]).

The purpose of the present paper is to study the geometry of tangent bundle
of a Finsler manifold. The study is based on some linear connections on vector
bundles over the slit tangent bundle TM of M. We consider the Cheeger-
Gromoll metric on TM and instead of Finsler connection we take the Vranceanu
connection on TM induced by the Levi-Civita connection on (m, G). Tt is
noteworthy that the local coefficients of the Vranceanu connection give the
local coefficients of all the classical Finsler connections.

In the next section, we introduce some basic formula from Finsler geometry
and define the adapted tensor fields R, B and C. Then in section 3, we show
that the curvature tensor field R of Levi-Civita connection V on (f]\vi, G) is
completely determined by the curvature tensor field R of Vranceanu connection
V on TM and the above adapted tensor fields. In continue, we give some
generalizations of some results obtained in [8]. We also provide some analogous
results. In section 4, we prove that (Z’“]\V/[7 G) is locally symmetric if and only
if (M, F) is locally Euclidean. This is an extension of a well-known Kowalski’s
result for Riemannian manifolds to Finsler manifolds.

2. PRELIMINARIES

A Finsler metric on M is a function F' : TM — [0, 0o) which has the following
properties:
(i) F is C> on TM = TM\{0};
(ii) F is positively 1-homogeneous on the fibers of tangent bundle T'M;
(iii) for each y € T, M, the following quadratic form g, : T.M x T,M — R on
T, M is positive definite,

1
g, (u,v) == 3 F2(y + su + tv)} |s.t=0, w,v € T, M.
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Let (2%) be a local coordinate system on an open subset U of M. Then {52}
form a basis for the tangent space at any point in U. For y € T, M, z € U,

write
_i9
o Y=Y 5.
Then (2%, 4y*) is a natural standard coordinate system on TU. Then the func-
tions
1 0*F*?
gij = iw,

define a Finsler tensor field of type (0,2) on TM. The n x n matrix [gi5] 1s
supposed to be positive definite and its inverse is denoted by [g%].

Also the Cartan tensor field is given by its local components:

1 1n09ij
CF = — g -2 2.1
17 29 8yh ’ ( )

by the homogeneity condition for F' we obtain
Cliy’ = 0. (2.2)

The formal Christoffel symbols of the second kind are

1 55 (99si  0Ogjk L OGks

2 drk  Qxs  Oxi )

They are functions on TU — {0}. We can also define some other quantities on
TU — {0} by

i
Yk =

Ni(z,y) == viy" — Clnkyye,
where y = 3 axl e T,M — {0}.
The pull-back bundle 7*T'M admits a unique linear connection, called the

Chern connection, which is torsion free and almost g—compatible. The coeffi-
cients of the connection in the standard coordinate system is

I =7k, — 6"(CijsNi — Ciis NP + CrisNY). (2.3)
By Euler theorem we obtain

k
Iy’ = Nf. (2.4)

The angular metric of (M, F') has the local components

hij = gij — lilj, (25)
where OF
li = gV = oy

Next we consider the kernel VT'M of the differential of the projection map
7 : TM — M, which is known as vertical bundle on TM. Denote by (VTM )
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the F (fz\? )-module of sections of VT M, where F (f]\?) is the algebra of smooth
functions on TM. Locally, T'(VTM) is spanned by the natural vector fields
{525, 507} Then by using the functions N} we define vector fields

0 0

Sz o

0

_ NI 2
zayj7

ie{1,..,n}, (2.6)

which enable us to construct a complementary vector subbundle’ HTM to VT M
in TTM that is locally spanned by {%, vy =22} We call HT'M the horizontal

Y S

distribution on T'M. Thus the tangent bundle of T'M admits the decomposition
TTM = HTM & VT M. (2.7)

For a vector field uw € T'M we shall denote by U its canonical vertical vector
field on T'M which in local coordinates is given by

U = (uom) (7)),

where u = (u',...,u™). We define the function r : TM — R by

r(p,u) = |ul = 1/ gp(u, u),
where
gp(u,u) = F?(u,u)

and put a = 1+72. Then we can define the Cheeger-Gromoll metric G on ™
induced by F as follows

(2.8)
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Now we define some geometric objects of Finsler type on TM. First, the Lie
brackets of the above vector fields are expressed as follows:

E 8%} = (5 + ij)a%, (2.10)
[azi,%} o, (2.11)

We note that Rfj define a skew-symmetric Finsler tensor field of type (1,2)
while (I‘fj + ij) are the local coefficients of Berwald connection [20]. Some
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other Finsler tensor fields defined by Rfj will be useful in study of Finsler
manifolds of constant flag curvature :

Rpi; = ghkaj7 Ryj = Ruijy', R? = g"" Ry;. (2.12)

From this we have

y"Rnij =0,  y"Rn; =0, Ry =Ry, (2.13)
1 /ORY Rk
k J 7
= 5 L ——+ ). 2.14
=3 ( oyt Oy > @1)

We define a symmetric Finsler tensor field of type(1,2) whose local compo-
nents are given by

B, = —L;. (2.15)
As a consequence we have

ryl =0. (2.16)

?

Next with respect to the decomposition (2.7), and by using the above Finsler

tensor fields Rfj, C7; and ij we define the following adapted tensor fields:

R :T(HTM) x T(HTM) — T (VT M), (2.17)
i O
R(X"Y") =RlY Xfa—yk,
C T(HTM) x T(HTM) — T(VT M), (2.18)
.0
C(X"Y") =CEXIY P
B :T(VTM) x T(VTM) — T(HTM), (2.19)
s

v v\ _ k j 7
BU".W") = BEUW' <.

where we set

0 ;6
X=X —, Y=Y _—
Sz’ oz’
) )
vo_ 7 ”rv — Hrz
v=v oy’ oy’

Then, we get

M(5ro50) =Bz *i) = i)

Thus HTM is an integrable distribution if and only if R = 0. On the other
hand, (M, F') becomes a Landsberg (resp.Riemannian) manifold if and only if
B =0 (resp. C =0). For more details, see [1].
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3. THE LEVI-CIVITA CONNECTION ON T'M

Let (T M G) be the Riemannian manifold, where G is the Cheeger-Gromoll
metric on TM given by 2.8. Then the Levi-Civita connection V on (TM G),
is given by

2G(VxY, Z) =X (G(Y, Z)) + Y (G(Z, X)) — Z(G(X,Y))
+G(X,Y], 2) - G([Y, 2], X) + G([Z,X].Y), (3.1)

forall X,Y,Z € F(m) We say that the Vertlcal distribution VT'M i 1S totally
geodesic (resp minimal) in TTM if HV 2 3 = = 0 (resp. g”HV @ =0).

Similarly, we say that the horizontal dlstrlbutlon HTM is totally geodesm (resp.
minimal) in TTM if V@L_% =0 (resp, g’ﬂ)@iﬁ =0).
st Sal

The Vranceanu connection V on TM that is induced by V is defined by
VxY = (VoY) + (Vn YR 4 [XP VU] + (X, V)", (3.2)

for any X,Y € I‘(f]\vi) The Vranceanu connection V is introduced by its
local coefficients for a study of both nonholonomic manifolds and nonholonomic
mechanical systems. The invariant formula 3.2 was given in the general context
of almost product manifolds. The Vranceanu connection is one of the main tools
in a study of the geometry of foliations. By using 3.2, 2.10 we obtain

5

= 0
= h 1k _—_
véjﬂ dxt 7(v5;% 5mi) ij Sk’ (3.3)
0 0 6
Ve o _[aTJJ" 5zl =0 (3.4)
9 — 0 0 v o_ k k i
vﬁ 8y1 [@7 ayl] (FZ] + ng)a % (35)
O 9, 2y_o 2y el )l
vﬁayi 7vo§j Tyl) ﬂaytJra( (8yi’U)6y1
9 o 0
_ ‘ 1 9
(aij )81+(a+ ) (5y1’8yJ)U
RS I R -
oyl’ oyt’ '

Now, we are ready to prove the following key lemma.

Lemma 3.1. The Lie brackets on TM are expressed in terms of Vranceanu
connection as follows:

i) (XM Y =V Y =V XM — R(X™ Y,
i) [X", Y] = Vyr YV — Vyo X",
i) [XV,Y"] = 0.
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Proof. i) By direct calculations and 2.9, 2.10 and 3.2 we get
(XM Y = (XYM (XYY = (VY = Ve XME - R(XM Y
=V Y - Vyn XM — R(XM YT,
[X}L7yv] _ [thyv]h + [X}L7YU]U _ [Xh’Y'u]v _ [X}L7Y’U]h
=VxnY? = Vyo X",
XV, V"] = [X",Y"]" + [X", Y] = Vxo Y = Vyu XV =0

This completes the proof. O

Now, we are going to find adapted tensor fields B and C' can be expressed
in terms of Vranceanu connection. More precisely, we prove the following.

Proposition 3.2. The adapted tensor fields B and C' can be expressed in terms
of Vranceanu connection as follows:

0 o(0( o) ) -5 pag) 07

9 6(c( i) ) () (o) 09

for any i,j,k € {1,...,n}.

Proof. From definition of B the left side is

3 8 6 . h 6 5 . h
G(B(@v 87111])’ 597) = —LijG(&Tha 697’“) = —Lijgnk- (3.9)

By using (2.8) and (3.5) we have

5G(527: 507) N Lo 00
=Tk G((Fm‘ + Lm‘)aiyhy @)
0 h h 0
—G(@7(ij+ij)W)
76(é(gij_gisgjtusut)> oG 9
= Sk — (Ui + Li,) (aT/h,aTﬂ)

0 8)'

- (FZJ‘ + LZ]')G<OT/“ oy
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Therefore, we get
o 0
Ve 7)

Thus

(V65,7 5
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1 0gij h h Yo ou®
a{ 5;; — rigng — Ukjgri + ﬁgjtusut + wgisgjtut

dg; dut
h t Jt t
— DRignsgieu™u’ + 0 gisu™u’ + < gisgjeu”

h t_rh I h t
— T%9nsgiew’u’ — Ligignj — Lijgni — Li;gnsgjeu v’

- Lngksgitutus}-

o 0 2
= 2L gni 1
) a k:zghj (3 0)

From (3.9) and (3.10) we deduce (3.7).
Now, by using 2.18 we infer

) 0 h 0 0
G(C(@’ﬁ)’aiyk) = CijG<87yha87yk> (3.11)
= L 3.12
= Cijk: (3.12)
Next we get
) )
(V) G i) = Ve (G 5)
_ 99
oyk
(3.11) and (3.13) imply (3.8). O

We define for each of the adapted tensor fields R,C' and B a twin denoted
by the same symbol as follows:

R :T(HTM) x T(VTM) — T(HTM), (3.14)
G(R(X",Y"),Z") = aG(R(X", Z"),Y")

C T(HTM) x T(VTM) — T(HTM), (3.15)
G(C(X", YY), Z") = aG(C(X", Z"),Y")

B :T(HTM) x D(HTM) — T(VTM), (3.16)

G(B(X" yv),z") = éG(B(Y”,Z”),Xh)

for each X,Y, Z € T(TTM).
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Theorem 3.3. Let (M, F') be a Finsler manifold, then the Levi-Civita connec-
tion V in terms of Vranceanu connection V on (TM G) are as follows:

. ~ ) 1) 6 0 1 1) 1)
D Ve Vinsw G T 2 )
- 5 0 1 5 0 5 0 0
) T = P I - B e B P —— I ——
ZZ) Vﬁ Y C((S.Tw ay] ) + 20 ((S.I'l’ ayJ ) + ( RN ) (;i—i 8y]
~ ) 1) 6 0 1 6 0 6 0
i) vay b Vaiyi S + C(éxﬂ’ 8y1) + 2aR(5xJ’ 6y1) (5:rﬂ ’ 8y1)
~ 0 1 o 0 0

R A A AT
for each i, j € {1,....,n}.

Proof. By (3.1) and (3.2) we get

6t g ) = 5 50) = (Vg 5m) - @17

By Koszul formula, (3.8) and (2.18) we deduce that

-5 0 1] 0G5 5 5, 0
GWazimayk)z{ o 5 o)

=~ Gk — 1G(R(5iz 5;‘)’3%@)
) ) 0 ) ) 0
:_QG(C(éxZ 61‘1)’8794’“) B %G<R(@’@)’8fyk>

6 -0 55) -3 ) ) 09

Thus, by (3.17) and (3.18) we obtain (7).
Next by using 3.2, (3.14) and (3.15) we obtain

. ag(ii)
6¥ 4, 5a) =5 (s + Gllgr 55 5
1 1) 1) 1 1) 19 0
=5(V22:0) (or 507) 20 (R G 500 aT,j)
~a6(Clmr ) 57) * 300 (Ror 52 505
0 )

~6(Clm a(;) ) *iG(R(%’aT,ﬂvw)

06 0 1 o6 0 0
G<C((W’8yj)+20zR(5xi’8yj)’6x’“>' (3.19)
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Then by using (3.2), (3.7) and (3.16) we have

1[ 0G50 5or )+G([ s 0,0,
2 St Sxt’ Oy’ Oyd

g 4 0
1 o 0 0 0
1

(B(a(zj ai ) 5il)+c(v5§1 3(;’3%)

6 0 0
ol i

o6 0 0 0

taking into account (3.19) and (3.20) we obtain (ii).
From Koszul formula, (3.14), (3.8) and (3.15) we infer that

-5 6y 1[0G(55. 55%) 5§ 6. 0
(V.2 50 508) —z{ay‘G([maxk]’ayi)

}_\

1) 1) ) ) 0
2{(V G)(é 7' Sa k)+G(R(M’M)’6gﬂ)}
6 0 ) 1) 1) 0
=56 (BG 5 ) + 06 (CG 5 57)

+G(V . O i)

By? 0t Sk

(3.21)

Next by using (3.2), (3.5), (3.7) and (3.16) we obtain

N . 0G (507, 5o%) o &, 0
G(Vazi(gaﬂ’6yk)_2{ o +G<[5‘yi7w}’87yk)

) 0
= 6([5 5ye)
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:%<Vam1 G) (a(z ai )

=26(BGr 5 55)
:G(B(%,a%),a%e). (3.22)

(3.22) and (3.21) give (iii).
Finally we use (2.8) and (3.2), and deduce that

- g 0 - a ., 0 a 0
G(Veapar) =GV 55) =6 (Vg 5) G
and by using (3.7), (3.1) and (3.5) we obtain

o 6 _1{5G(a‘},a@w) o 0.0

G(V

2 B9 5aF) 3 oo g 5ar) 5y0)

6 9d, 0
*G“axk’ayi]’ayﬂ}

== 3(7:59) (35 3)

1 o 9, o
EG(B(ayi’aTﬂ‘)’ —). (3.24)

(3.23) and (3.24) give (iv). O

Also, by a simple argument we get the following.

Proposition 3.4. Let (M, F) be a Finsler manifold. then the following asser-
tions hold

i) F' is a Landsberg metric if and only if VT M is totally geodesic in TTM.
1) F is a weakly Landsberg metric if and only if VT M is minimal in TTM.
111 F' has zero flag curvature if and only if HTM is integrable.

Proof. Taking into account (3.3) and (2.9) we get the assertions. O

Now, we are ready to prove the following.

Theorem 3.5. Let (M, F) be a Finsler manifold. Then the following state-
ments are equivalent.

i) (M, F) is a Riemannian mamfold
() dw(X”) =0 for any X = X2 a7
iii) The horizontal distribution HTM is minimal in TTM.
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Proof. Equivalence of statements (i) and (4i7) follows from (3.3) and Deicke’s
theorem. On the other hand, by definition of divergence we have
~ 0 , - g 6 , - o 0
o — ) =gt - Jl - =
d“’(ay) g G(vﬁ8yi’6ﬂcl) tyg G(vﬁayi’ﬁyJ

_ 1 1 1, /.
=g’ (ij + %Rﬁj)gu +¢"'—Clign — — 9"y (gjl + yjyz)
(1+

1 jl @) jl 1 5
— 2 Y (gil + yiyl) + oz Ju (éh’j + yiyj) I ZELY

1+a) 1 . . )
:%gﬂcijl - Oﬂ{yz‘g]lgjl + ng]lgil - (1 + Ol)gijg]lyl
+ gjlyiyjyz}-
Then
-~ 0 1+« . 1
dw(@Tﬂ) :%gﬂ@jl - ?{nyl +ny;, — (1 4+ a)ny; + (o — l)nyl}
1 ,
:ﬂgﬂ@ ,
o
which implies that
— 1 o
div(X?) = %Xlgﬂciﬂ (3.25)

for X = X* 821" Hence the equivalence of statements (i) and (i%) follows from
(3.25). O

We denote the curvatures tensor fields of V and V by R and R, respectively,
and use the symbol A(xn» yny as following formula

Aperym {FXM VM = P3P YY) = p(rt, XM, (3.26)
In a similar way we use the symbol Axv yv).

Now, we are going to find the curvature tensor field R of Levi-Civita con-
nection on (T'M,G).

Theorem 3.6. Let (M, F) be a Finsler manifold, then the curvature tensor
field R of Levi-Civita connection on (TM,G) are as follows:

D A ) i R 5) o+ B (5 )
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1 1) 1) 1) 1 1) 1) 1)
iP5 B 5)) 50 (5 B 50
1) 1) 1 1) 1) 1)
B(—,C(—,—)) + =R(—,C(—, —
to (5 Clsg 6xk)) + 2R(5m (5o &ck))
o) 1) 1)
+a0(57. 0 520))

x
) (1) (7€) ()
D A i)y " i~ 2 (R )
i Bl )

+(%28) (5o ) * (V) (527 )

+C(5(Sx (5;,%))—@0(%, (%’({%ﬂ“))

35 R 5y) + 30 (V) (5 )
* 2 (5 B )~ 375 O )

1 5 o 0
- MR(M’R(W’W))}'

+B(C<§a%>%) %B(R%%»%)

+ (5 ) * 26 (Plgm 37 5)
# 5 (G g ) * 1 (Flm ) 30)
(T8 (5 )+ (7))

52 () (i ) ~ 0 ) e ) |



1 o 0 0 1 o 0 0
3PP 500 ) (P o)

0 A o) i (i a) ae B (s Pl 5,)
G 57)) " 2a
+(758) (5 55) + 5 Bl 05)
ell

(v9) (5 )

+ a(V%O (i % + —R(%,B(%k, 8%.))

) 5 0
5xk’3yj))_@ (@’ (W’@))

(
L) (e )+ T W) i),

200\ " By Sxt’ Oyk 20 Oyl Oy
1) 0 0 1 0 0 0
I I IR S I e

22605 )R (55357
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Proof. By using (3.3) and % = 0 we obtain

.- = 0 o 90 1 o 6
Vit Vil ar it (Vm (g ) ~ 2" (G m))

VLV aC(é.Vai)

sat 5;7 51‘k dxt’ o7 dxk

38 (5 V)~ 5 (5 5

oo ol i) ) - a( e (i)
~on( 055 55) ) - 39 (5 )
() - (5 nl %)
e )|

. 5o o, 5
;m]&xki [f 51] 5xk [g m] 5xk

5 § 6., 6
Vit g ¢ (Rsxw(sxﬂ m)

1. (.6 6., 6
‘zR<[mM w)

5 5
Vi 5 52 k+0(5 5

1 5 5 8, 5 .5 6,
+2a3<m[axwm] +B<m[mw]>

~aC(V s, 9 i)

s

s
>
o
SRS
.
=
~—

_V[

a
[«
8
<
(o9
8
o

sat’ 5.LJ (;xk

+aC(V$5%i»%) - %R(vaii %%>
) -

6 9

1
+ §R(V 507 0zt oxk

R
1 1) 1) 1) 1) 1) 1)
- P — _B e P — I .
2aR<6xk ’ R(&wl 5w3> <5wk’R((5:ﬂ” oxd )>
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By using

R(XV7 Y)Z =VxVyZ -VyVxZ— V[X’y]Z (3.29)
for both R and R and taking into account (3.26), (3.27) and (3.28) we obtain

e e (AN CC)
(s n () ) (e n(i )

1 1) 1) 1)
—Aww){zB(mR(me
1 1) 1) 1) 1 1) 1) 1)
il (5 PG 5)) 50 (5 B 50
) 1) 1) 1 1) 1) 1)
+aB(55. 0 5) + 585 O 5r)
) 1) 1)
527 C G o))

3 28) (7€) ()

By similar calculations we can obtain all the other equalities. ]

+ozC(

Lemma 3.7. Let L = ¢ 521- be the horizontal Liouville vector field, then it

is parallel with respect to Vranceanu connection along horizontal distribution
HTM , that is,

VsL=0 je{l,.,n} (3.30)

sxd

Proof. By direct calculations we have

Vs L=V_s y
527 5,1 ozt

_ dy' o i i

Towi oxi VR b
Oyt K )

—_ N? _ 2
7 Qys dxt gk
s J k 4

__Njéij—'_NJW:O'

This completes the proof. ([l

Let J be the almost complex structure on ™ given by

J(afci) - a%‘? J(azi> - _% (3:31)
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Proposition 3.8. The integrability tensor field R ome 1s related to both the
curvature tensor field R and the torsion tensor field T' of Vranceanu connection
as follows:

R(X"YM) = J(R(X",Y"L)) =T(X,Y)  VX,Y e (TTM)
Proof. We use (3.7), (2.9), (3.4) and (3.31) and we have
J(R(X*z Yh)L)) :J(vxhvth CVynVn L — V[X;L7y;L]L)
== J(Vixnynp L+ Vixnynp L)
~J(VreenymL)

~RJ(V o, L)

9y

= (535)
=R(X" Y

Taking into account (3.1) and that
T(X,Y)=VxY -VyX - [X,Y],
We deduce that
T(X,Y)=R(X" Y").

Then, we get the proof. O

4. FLAG CURVATURE OF (M, F) AND CURVATURES OF (TM,G)

Let (M, F) be an n—dimensional Finsler manifold and (TM,G) be its slit
tangent bundle endowed with Cheeger—G{gI/noll metric G induced by F. We
denoted by U the vertical vector field on T'M, that is,

U=y oy (4.1)
We put locally the twins of R,C and B
6 0 ——
1) (5st ’ 3yi> T gk (42)
o0 0N A O
ZZ) (@3 8yl) - Yij 5 k> (4 3)
o 0 i
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Taking into account that C;;; and B;;y, are symmetric with respect to all indices
and by using (3.14), (3.15), (3.16), (2.13), (2.14), (2.15) and (2.1) we have

g 0 <
Cijk = Cligp = OéClkG(a -, 3 j> = Cjr9si = Cirj = Cijr, (4.5)
_ 1 )
B = agpkBﬁkgti = EBZ = 357 (4.6)
_ _ o 0
Rka‘ = Ré-igkt aRle(a > a ]) = Rjki» (4.7)

Since ijj;m- = 0, then we obtain
ijchi =0. (4.8)

Here, we obtain some equalities for the adapted tensor fields R,C and B.
Lemma 4.1. The adapted tensor fields R,C and B satisfy the equalities:

i) R(X"U)=o0,

i) IR 1= R

0 o) o) =0(igg) () =
)-

0 0
B(v.5 ) = B(L. @) = B(50U) =0,
Proof. They are direct consequences of definition of the adapted tensor fields
R,C and B and (3.29), (4.1), (4.5), (4.6), (4.7), and (4.8). d

)

(8y“

Let V and V be the Vranceanu and Levi-Civita connections on (ﬁ\?, G).
In the following, we find some interesting relations that will be used in proving
some results.

Lemma 4.2. Let V and V be the Vranceanu and Levi-Civita connections on
(TM,G). Then we have the following equalities:

1)
DV l=gi

1( 0 0
) V2 U= a<ayi + (a z’U)U>
3) Vs U=0,
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6) Vo U=~ (;yi +G(£i,U)U>,

ay? «

0 0 1

oy* o

for any i€ {1,...,n}.

Proof. We prove this Lemma part by part.

1) By using (3.4) and (3.31) we obtain

VoLV :53% :—J(a{;i)

9 i}
oy* oy* oxd

2) We use (3.6) and (4.1) and deduce that

ay ayl
:azi (i(_ G(a%, U)U = GU,U) 5 + (14 a)G(U.
_G(azi,U)G(U, U)U)
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by similar calculations and using (3.3), (3.4), (3.5), (3.6), (3.31), (4.1), (4.5),
(4.6), (4.7) and Theorem (3.3) and Lemma (3.7) we obtain the remaining for-
mulas as following

R B
3) VJZZU 1) i@+y véji OyJ
.0 . 0
_ NI i1k k) _ 2
=~ Nig ity (% +28) 557
0 0
- _ NI — Nk——

_0 p Lige O
Szt 2a” TV Sk
) 1 0
-2 4 2 Rr(1, >
drt 2« ( ’ 8y1>

o)+ (e )

- ) ) 0 6 0 1 6 0
= — J* J —_— _— ] - = —_—
5) Vaii L N; oxd Ty <v5ii SxJ ac(&r;“ 5xj) 2R(6a:i’ 5a:j)>

(5 o)
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(i 3

-9 . 0 b 0
— 2
8 vL@yi Y {vafjayi_FB(éxj’@yi)—F

*iR(aiJ az )}

v, 2t r(n 2,

Ayt 2« oy
9) V 0 _ V.o — =0
Usei ¥ Voiows

ai> + (5 3)

) )
i
10) VUémi i {vaw 5951 (

+ 20 5:# 3yﬁ
-9 0 0
S —
1) VU gy =Y {Vaw Byt B(aya dyi )} VU gy
1 9 )
_a{—G(U,U) - G(ayz, )U—l—(l—&-a)G(a—yi,U)U
- G(i U)G(U U)U
8yz7 b)
1 9 9
_a{(l—a)ay +G<ayz, )U}
This complete the proof. (Il

Lemma 4.3. The adapted tensor fields R,C and B with respect to Vranceanu
connection on (TM,G) satisfy the equalities:

)(VxR)(L,L) =
UR)(axl aya) - R(%’a%) _R(zsii’VUaaa)

a
9(75).1) = (7:0) () = (9:0) (1. ) =0,
o

VUO)(éx’ 8y1) - C(%’aiyi) _C(%’aniyj)’

<
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(V5. 8) 0.0 = (V28) (£ ) = (V. B) (Vi) =0
0)(%08) (55 3) = 2 (50 Y 3,7)

7) (VUB) (a%" a%‘) - —B(aniyi, a%‘) - B(%,VU%).

Proof. By taking into account that C’fj , Bk and Rk are homogeneous of degrees

-1, 0, and 1 respectively and skew- symmetrlc of R and using Lemma (4.2),
Lemma (4.1) and using

VLL:O VUU:U

we prove the lemma. O

Theorem 4.4. (M, F) is a Riemannian manifold if

(@UR) (%U%) -0 dje{l,..n) (4.9)

Proof. By Lemma 4.1, Lemma 4.2, Lemma 4.3, and Theorem 3.6 we obtain

5 9 0 4 ° 90 .
R( zi’U 8yﬂ) o) (R( xZ’U 8yj) +C($’3T/j) - 210‘R(‘W7ayj)>(p0)

Next, we have

{6(:55“(]} :_NZ%"'?/ (Ffj +L§j)8iy’“ =0

Vo Y )l(p, =0

Therefore 5 5
(5w1 T Oy ) [(p,0)

Now, If we assume (4.9) and calculate it at (p,0) we get

() )= (senl ) i )

By using homogeneous of C’”, R we deduce that

(@UJ%) (%,U, aiya)\(p,m - —20(%, %). (4.10)

(5 2) =

if and only if (M, F) is a Riemannian manifold. We obtain the result from
(4.10) and (4.9). O

Since
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Theorem 4.5. Let (M,F) be a Finsler manifold and G be a Riemannian

Cheeger-Gromoll metric on TM induced by F. Then (TM, G) is locally sym-
metric if and only if (M, F) is locally Fuclidean.

Proof. Let (M, F) be locally Euclidean then the statement is clear. From
being locally symmetric of (TM,G) and Theorem 4.4, we have (M, F) is a
Riemannian manifold. Next we get

(v;>;R(;)v;)

- (e ) - (e 5)
- NLR(U, %)a%t - %R(U, %)R(L, %ﬁ)

= iRER(U, % aiyk _ %R;R(a a%,)%

= 1 MR ) ~ 0 B (5 )

)

Therefore
RERY, + RLRY, =0
That deduces
D
Rij =0.

Thus (M, F) is a flat Riemannian manifold which implies that it is locally
Euclidean. (]

Now, we find some equivalence relation for Landsberg metric.

Theorem 4.6. Let (M, F) be a Finsler manifold. Then the following state-
ments are equivalent:

i) (M, F) is a Landsberg manifold.
y 5 o\ 0 a1\ a .
i) R(U g5) a5 = R(U 557) gy

i) (Vul) (0, ) = (FoR)U. e ).
fori,je{l,..,n}.
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Proof. We use Theorem (3.6), Lemma (4.1), Lemma (4.2), Lemma (4.3) and
obtain

R(U, a,)i:R(U 9 )a{(jG(U,U)B< awi)

T Oyt Oyd

(V5 ) g+ B )
B 20;5 : (a?/z’ a%) a %B(azz’ aiyj)

Next, we have

(Vok) (v, 2 ) =vui(v 2 2 R(vr 2 00

Ay’ oy’ dy' Oyl dy' Oy
- -0 0 - 0 -~ 0
AT g) ~ R V)
- 0

o—2 - 0 1 0 0
T @@@ﬁ*fW@WW%y@
0 0 a—2 0 0
=VuR(U 55 aT/J‘> +=r(v, it aT,j)
1 0 0 a—2-U(a) o 0
aG v Oy )R<U’ oy’ U) o? (&yz " Oy )
B o 0 a—2-U(a) o 0
R aras) e 2o as)
As (M, F) is a Landsberg manifold if and only if B = 0, the equivalence of the
statements follows. O

Let (z,y) be a point of TM. Suppose that

0
oxt
is another tangent vector to M at x such that y and X are linearly independent
in T, M. We call the plane II(X) = span{y, X} the flag at x with flagpole y
and transverse edge X. Consider the horizontal lifts

)

ozt

X =X?

Xh:Xi
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and L of X and y respectively, the flag curvature of (M, F') at the point z with

respect to the flag II(X) is the number

G(R(X", L, L), X")
QX" L) ’

K(X) = (4.11)

where R is the curvature tensor of Vranceanu connection on TM and
Q(Xha L)= G(Xha Xh)G(La L)- G(Xha L)z

We may choose X such that X" and L are orthogonal with respect to G' (see
Bao-chern-Shen [4]).

We recall that the sectional curvature of (T'M, G) at point (z,y) with respect
to the plane span{U,V'} is given by

RU,V, V), U)
Q(U,V)

Theorem 4.7. Let (M, F) be a Finsler manifold and (T]\V/I,G) the slit tan-
gent bundle of M endowed with the Cheeger-Gromoll metric G. Then we have
following equalities:

R ) =5 ) g 1R 0) ) (7). 0)

KU, V)= G(

(4.12)

(1) ()35 )+ o 5(s )
mz)R<5 = U, U) =0

Proof. We use Theorem 3.6, Lemma 4.3, Lemma 4.2 and get

R(%,L,L) :R(%,L,L) n 21QR<L7R<£Z.,L)>
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Next we obtain

R(G%,L,L) :R(%,L,L) _ (VLB)

Then we have

R((S%U U) :R<—i,U,

(0%
:R<%, U, U) —0
Finally we deduce that
R(a%,U, U) :R(G%,U, U) n %G(U, a%‘)B(U’ U)
- i(v B)(U U) — %G(U U)B(a%., U)

=V o VyU ~VyV o U~Va ;U
e oyt oyt

1,0 )
:VaU—VU< (—+G(— U)U) V.U
Byt Dyt

a dyi oyt’
3—3a 0 3 0
S e e e R
__3g. 9
T o Yoyt

This completes the proof.
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Let (M, F) be a Finsler manifold and (TM,G) the slit tangent bundle of
M endowed with the Cheeger-Gromoll metric G. Here, we are obtain some
important relations for its flag curvature.

Theorem 4.8. Let (M, F) be a Finsler manifold and (f[\vl, G) the slit tangent
bundle of M endowed with the Cheeger-Gromoll metric G. Then we have the
following equalities:

() =1e() - 3
(. IR(E, 1P
K(Z’?y“L) :i Q(a(zlé,L)
K(%U) L

~ a 3

K(@’ )=

Proof. By using Theorem 3.6, Theorem 4.7 and taking into account that the
last term in (2) of Theorem 4.7 is lying in I'(VT'M) we have

G(R( 5 L)L, 55.)

K(aiL> = M;:;“L) =
_G(R(ééw“L)L’ 5‘;) 3 G(R(L,R(%7L))756wi)
T R TR

which yields

~( 0 0 » 527 e
K(Q,L) :K(aqﬂ‘) +1-a Qé(ﬁi,L;
—x( 4 %%M

ozt 4 Q(%,L)

Next by using Theorem 4.7 and taking into account that the first and second
term in (44) of Theorem 4.7 are lying in I'(HT'M) we obtain

G(R(aa,L)L 9)

~ 0 y? ’ Oyt
- L) =
(8y1 ) Q(B?;”L)
o o
1 G(R(LyR(L, ayJ),ayL)
o QD)



28 Zohre Raei

which yields

K(aiyi’L) " 4a? QL. L)
1 IR, 550)I1”
:4a2 Q(a% L)
_ 1R, 501
4o Q(a?ﬁ’L)

f((5 v) =

Sxt’

Finally by using Theorem 4.7 we have

~ 7 0 Y ) 9y’
K - U) =
_G( - szo(Zz7 a(zL)
Q2 U)
5 6(— 60U + (= 06( )
o Q%)
Then
R(2 ) =3 CU g 0= DGl
oy’ @® Gz, 52:)G(U,U) = G(5%:,U)?
:3 -G(U, a?ﬁ)z + (a— 1)G(3zia 33)
o G(a?li7 a?!z)(a - 1) - G(321 3 U)?
which yields
~ /0 3
(5°0) =2z
This completes the proof. ([l

Corollary 4.9. The tangent bundle of a Finsler manifold cannot be of positive
or negative sectional curvature with respect to G.

Proof. This is a direct consequence of Theorem 4.7. ]
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We call K (%,L) (resp. K (%HL)) the L-horizontal sectional curvature
(resp. L-vertical sectional curvature) of (m, G).

Corollary 4.10. The flag curvature of the Finsler manifold (M, F) is deter-
mined by the L-horizontal and L-vertical sectional curvature of (TM,G) as
follows:

Q|

K( 9 ) :f((i,L) +3o<f((i L)Q<(ZL§

ox’ ox? oy’ Q( 51,

=g

Corollary 4.11. If the Finsler manifold (M, F) is flat, then the Cheeger-

Gromoll metric G of tangent bundle of TM has nonnegative sectional curva-
ture, which are nowhere constant.
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