Journal of Finsler Geometry and its Applications Vol. 6, No. 2 (2025), pp 93-102

https://doi.org/10.22098/jfga.2025.17089.1154

On quasi-Einstein Kropina metrics

Saeedeh Masoumi^a Bahman Rezaei^a * o and Lava Ghasemnezhad^a

^aDepartment of Mathematics Urmia University, Faculty of Science, Iran

E-mail:s.masoumi@urmia.ac.ir

E-mail:b.rezaei@urmia.ac.ir

E-mail:1.ghasemnezhad@urmia.ac.ir

Abstract. In this paper, we consider weakly quasi-Einstein Finsler metrics, which is extension of Einstein conception. In fact, we investigate quasi-Einstein Kropina metrics in both regular and singular case and we find the necessary and sufficient conditions of quasi-Ricci flat kropina metrics.

Keywords: Kropina metrics, quasi-Einstein, quasi-Ricci flat.

1. Introduction

In Finsler geometry, the Ricci curvature plays an important role. It is a natural extension of the Ricci curvature in Riemannian geometry and defined as the trace of the Riemann curvature. A Finsler metric F is called an Einstein metric on an n-dimensional manifold M if it satisfies

$$Ric = (n-1)c(x)F^2,$$
 (1.1)

where c=c(x) is a scalar function [6][7]. Finsler metric F is said Ricci constant if F satisfies (1.1) where c is constant. Especially when c=0, F is called Ricci flat. There is another quantity which is determined by the Busemann-Hausdorff volume form, that is the so-called distortion τ which the

AMS 2020 Mathematics Subject Classification: 53B40, 53C30

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2025 The Author(s). Published by University of Mohaghegh Ardabili

^{*}Corresponding Author

horizontal covariant derivative of τ gives a non-Riemannian quantity the S-curvature.

In Finsler geometry, so-called (α, β) -metrics are those Finsler metrics which can be expressed in the form $F = \alpha \phi(s)$, where $\alpha := \alpha(x,y) = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta := \beta(y) = b_i(x)y^i$ is a 1-form on M. In the past several years, we have witnessed a rapid development in Finsler geometry. This is partly because of the research on the (α, β) -metrics [2]. When $\phi(s) = \frac{1}{s}$, the Finsler metric $F = \frac{\alpha^2}{\beta}$ is called Kropina which was introduced by Berwald [8]. These metrics are called regular Finsler metrics if $\phi(s)$ is a smooth function on $(-b_0, b_0)$ satisfying

$$\phi(s) > 0$$
, $\phi(s) - (s\phi'(s) + b^2 - s^2)\phi''(s) > 0$, $|s| < b < b_0$. (1.2)

and β satisfies $||\beta||_{\alpha} < b_0$ (see [23]). If ϕ does not apply condition (1.2), then Finsler metrics have been called singular. Singular Finsler metrics is introduced by Z. Shen [3, 4]. In recent years, many scholars have conducted a great deal of research on them. Cheng-Shen-Tian proved that the polynomial (α, β) -metric is an Einstein metric if and only if it is Ricci-flat [5]. In 2012, Zhang and Shen specified the condition of Einstein Kropina metric . They proved a non-Riemannian Kropina metric $F = \alpha^2/\beta$ with constant Killing from β on a manifold M with dimensional $n \geq 2$, is an Einstein metric if and only if Reimannian metric α is an Einstein metric [16]. In Reimannian geometry, J. Case, Y. Shu and G. Wei studied m-quasi-Einstein which is a generalization of Einstein metrics [20, 21, 22, 10]. The Ricci-curvature and Scurvature have important and fundamental topic in Finsler geometry [15, 18]. Recently, Ohta introduced a definition of N-Ricci curvature in Finsler geometry [11]. This concept is generalized by H.Zhu, who characterize quasi-Einstein metrics. He found the structure of quasi-Ricci flat square metric which is the famous Berwalds metric [14].

Finsler manifold (M, F) is called N- weakly quasi-Einstein if it satisfies

$$Ric + \dot{\mathbf{S}} - \frac{\mathbf{S}^2}{N-n} = (n-1)\left(c + \frac{3\theta}{F}\right)F^2,$$

where \dot{S} is the covariant derivative of S along a geodesic of F and c = c(x) is scalar function and θ is a 1- form on M. If $\theta = 0$ and $N = \infty$, then Finsler metric F is called quasi-Einstein and if c = 0 is said quasi-Ricci flat.

In this paper, we are going to study Kropina metrics of quasi-Einstein and quasi-Ricci flat cases. In fact, the main theorem is as follows:

Theorem 1.1. Let $F = \frac{\alpha^2}{\beta}$ be a Kropina metric on n-dimensional manifold M with volume form $dV_F = e^{-f}dV_{\alpha}$. Then F is quasi-Einstein if and only if

$$s_j^i s_i^j = -2[2c(n-1) + s^i s_i],$$
 (1.3)

Case I: Assume $n \neq 2$

• if F be regular then

$$Ric_{\alpha} = \frac{1}{B^{2}} \left[(n-2) \left(s_{0}^{2} - \sigma^{2} \beta^{2} \right) - 2(n-2) \sigma s_{0} \beta \right]$$
$$- \frac{1}{B} \left[2s_{0|0} - 2f_{0}s_{0} \right] - f_{0|0} + \eta \alpha^{2};$$
(1.4)

• if F be singular then

$$Ric_{\alpha} = (n-2)\left(s_0^2 - \sigma^2 \beta^2\right) - 2(n-2)\sigma s_0 \beta$$
$$-2s_{0|0} + 2f_0 s_0 - f_{0|0} + \eta \alpha^2, \tag{1.5}$$

Case II: Assume n=2

• if F be regular then

$$Ric_{\alpha} = -\frac{1}{B} \left[2s_{0|0} - 2f_0 s_0 \right] - f_{0|0} + \eta \alpha^2; \tag{1.6}$$

• if F be singular then $Ric_{\alpha} = -2s_{0|0} + 2f_0s_0 - f_{0|0} + \eta\alpha^2$, where $\eta = \eta(x)$ is function on M.

2. Preliminaries

In 1918, Finsler metrics studied by P.Finsler's [9]. Let F be a Finsler metric on manifold M, a spray is a smooth vector field G on TM_0 which is expressed by

$$G(x,y) := y^i \frac{\partial}{\partial x^i} - 2G^i(x,y) \frac{\partial}{\partial y^i},$$

where geodesic coefficients defined by

$$G^i := \frac{1}{4}g^{il} \left[[F^2]_{x^m y^l} y^m - [F^2]_{x^l} \right],$$

and $G^i(x, \lambda y) = \lambda^2 G^i(x, y), \, \lambda > 0.$

For Finsler metric F on manifold M, the Riemann curvature $R_y = R_k^i(y) \frac{\partial G^i}{\partial x^i} \otimes dx^k$ of F is defined by

$$R_k^i := 2\frac{\partial G^i}{\partial x^k} - y^j \frac{\partial^2 G^i}{\partial x^j \partial y^k} + 2G^j \frac{\partial^2 G^i}{\partial y^j \partial y^k} - \frac{\partial G^i}{\partial y^j} \frac{\partial G^j}{\partial y^k}. \tag{2.1}$$

Ricci curvature is the trace of the Riemann curvature, which is called by

$$Ric := R_m^m. (2.2)$$

For a Finsler metric F, let

$$R_k^i = cF^2 \left(\delta_k^i - F^{-1} F_{y^k} y^i \right). \tag{2.3}$$

Then F is called of scalar curvature, where c = c(x, y) is function on TM.

The Busemann-Hausdorff volume form $dV_{BH}(x) := \sigma_{BH} dx^1 \wedge \wedge dx^n$ on Finsler space (M, F) is defined by

$$\sigma_{BH}(x) := \frac{w_n}{\left\{ Vol(y^i) \in R^n | F\left(x, y^i \frac{\partial}{\partial x^i}|_x\right) \right\}},$$

where $Vol\{.\}$ denotes the Euclidean volume function and $w_n := Vol(B^n(1))$ denotes the unit ball in R^n . There is the scalar function $\tau = \tau(x,y)$ on TM_0 associated with the Busemann-Hausdorff volume form $dV_{BH} := \sigma_{BH}(x)dx^1 \wedge \cdots \wedge dx^n$ is called the distortion and is as following

$$\tau(x,y) := ln \left[\frac{\sqrt{det(g_{ij}(x,y))}}{\sigma_{BH}(x)} \right].$$

The S-curvature is given by

$$\mathbf{S}(x,y) := \frac{d}{dt} \left[\tau(c(t), c^{\cdot}(t)) \right]|_{0},$$

here c(t) is the geodesic with c(0) = x and c(x) = y.

For Finsler metric F on manifold M, the S-curvature is defined by

$$\mathbf{S}(x,y) := \frac{\partial G^l}{\partial y^l} - \frac{y^l}{\sigma_{BH}} \frac{\partial (\sigma_{BH})}{\partial x^l}.$$
 (2.4)

Let F be metric Finsler with volume form $dV_F = e^{-f} dV_{BH}$ on TM_0 . Then quasi-Ricci curvature is called by

$$Qric := Ric + \dot{\mathbf{S}},\tag{2.5}$$

where \dot{S} is the covariant derivative of S along geodesic of F [14, 19]. The (α, β) -metric can be expressed by the form

$$F := \alpha \phi(s), \qquad s = \frac{\beta}{\alpha}.$$
 (2.6)

It is known that is positive and strongly convex on TM_0 if and only if

$$\phi(s) - s\phi'(s) + (B - s^2)\phi''(s), \tag{2.7}$$

where $B := a^{ij}b_ib_j = ||B||\alpha^2$.

The spray coefficients of (α, β) -metrics are given by [13]

$$G^i = G^i_{\alpha} + Q^i, \tag{2.8}$$

where

$$Q^{i} := \alpha Q s_{0}^{i} + \theta \left(r_{00} - 2\alpha Q s_{0} \right) \frac{y^{i}}{\alpha} + \psi \left(r_{00} - 2\alpha Q s_{0} \right) b^{i}, \qquad (2.9)$$

$$Q = \frac{\phi'}{\phi - s\phi'}, \quad \theta = \frac{\left(\phi - s\phi'\right)\phi' - s\phi'\phi''}{2\phi\left[\phi - s\phi' + (B - s^2)\phi''\right]}$$
(2.10)

$$\psi = \frac{\phi''}{2\left[\phi - s\phi' + (B - s^2)\phi''\right]},\tag{2.11}$$

$$G_{\alpha}^{i} = \frac{1}{4} a^{ij} \left[[\alpha^{2}]_{x^{l}y^{j}} y^{k} - [\alpha^{2}]_{x^{j}} \right]. \tag{2.12}$$

are the spray coefficients of the Riemannian metric α . The spray coefficients of $F = \frac{\alpha^2}{\beta}$ are given by

$$G^{i} = G_{\alpha}^{i} + \alpha Q s_{0}^{i} + \theta (r_{00} - 2\alpha Q s_{0}) \frac{y^{i}}{\alpha} + \Psi (r_{00} - 2\alpha Q s_{0}) b^{i}, \qquad (2.13)$$

where

$$Q = -\frac{1}{2s},$$

$$\psi = \frac{1}{2B},$$

$$\theta = -\frac{s}{B}.$$

The S-curvature for (α, β) -metric is given by

$$\mathbf{S} := 2\psi(r_0 + s_0) + ((n+1)\theta + \psi_s(B - s^2))(r_{00} - 2\alpha Q s_0) \frac{1}{\alpha} + f_0, \qquad (2.14)$$

where $f_0 := f_{x^i} y^i$.

We use some notations for (α, β) -metrics as follows,

$$\begin{split} r_{ij} &= \frac{1}{2}(b_{i|j} + b_{j|i}), \quad s_{ij} &= \frac{1}{2}(b_{i|j} - b_{j|i}), \quad r_{00} = r_{ij}y^iy^j, \quad s_0^i = a^{ij}s_{jk}y^k, \\ r_i &= b^ir_{ji}, \quad s_i = b^jr_{ji}, \quad s_0 = s_iy^i, \quad r^i = a^{ij}r_j, \quad s^i = a^{ij}s_j, \quad r = b^ir_i, \end{split}$$

where "|" denotes the covariant derivative with respect to Levi-Civita connection of α , $(a^{ij}) := (a_{ij})^{-1}$ and $b^i := a^{ij}b_j$.

The Riemann curvature of Kropina metric as follows

$$Ric_F = Ric_\alpha + T_n^n, \tag{2.15}$$

where

$$T_{n}^{n}: = -F^{2} \left[\frac{1}{2B} s_{i} s^{i} + \frac{1}{4} s^{i}_{j} s^{j}_{i} \right] + F \left[\frac{2n-3}{2B} s_{i} s^{i}_{0} - \frac{1}{B^{2}} r s_{0} \right]$$

$$- \frac{1}{2B} \left(2r_{i} s^{i}_{0} + b^{i} s_{i|0} - 2s_{0|b} - 2s_{0} r_{i}^{i} + 3s_{i} r_{0}^{i} \right) - s^{i}_{0|i} \right]$$

$$+ \frac{1}{B} \left[\left(r_{i}^{i} r_{00} - b^{i} r_{i0|0} - r_{0i} r_{0}^{i} \right) + \left(2n-1 \right) r_{0i} s^{i}_{0} + \left(n-2 \right) s_{0|0} \right]$$

$$- \frac{1}{B^{2}} \left[\left(n-2 \right) s_{0}^{2} + \left(r_{00}r - r_{0}^{2} \right) + 2 \left(2n-3 \right) r_{0} s_{0} \right]$$

$$+ \frac{n-1}{FB^{2}} \left[2r_{00} s_{0} - 4r_{00} r_{0} + Br_{00|0} \right] + \frac{3(n-1)}{B^{2} F^{2}} r_{00}^{2}. \tag{2.16}$$

Now we obtain $\dot{\mathbf{S}}$ for Kropina metric as following

$$\dot{\mathbf{S}} := \frac{F}{B} \left[-\frac{rs_0}{B} - ns_i s_0^i + r_i s_0^i + B f_{x^i} s_0^i - s_0 f_b \right]
- \frac{1}{B^2} \left[r_{00} r + 2r_0^2 - B \left(2(2n+1)r_0 s_0 - 2(n+1)r_{0i} s_0^i \right) \right]
- ns_{0|0} + r_{0|0} - f_b r_{00} + s_0 2 f_0 \right) - B^2 f_{0|0} \right]
+ \frac{1}{B^2 F} \left[-\frac{4(n+1)}{F} r_{00}^2 - 2(2n+1)r_{00} s_0 \right]
+ B \left(2(2n+3)r_{00} r_0 - (n+1)r_{00|0} + 2f_0 r_{00} \right) \right].$$
(2.17)

Lemma 2.1. Let $F = \frac{\alpha^2}{\beta}$ be a Kropina metric an n-dimensional manifold M with volume form $dV = e^{-f} dV_{\alpha}$. Then quasi-Ricci curvature of F is given by

$$Ric + \dot{\mathbf{S}} = Ric_{\alpha} + f_{0|0} - \frac{s_{j}^{i} s_{i}^{j} F^{2}}{4} + F\left(f_{x^{i}} s_{0}^{i} - s_{0|i}^{i}\right) - \frac{1}{B^{2}}\left((n-2)s_{0}^{2}\right)$$

$$+2r_{00}r + r_{0}^{2} - 8r_{0}s_{0} + 2rs_{0}F\right) + \frac{1}{B}\left[r_{i}^{i} r_{00} + r_{00|b} + r_{i0|0}b^{i}\right]$$

$$-r_{0i}r_{0}^{i} - 3r_{0i}s_{0}^{i} - 2s_{0|0} + r_{0|0} - f_{b}r_{00} + 2f_{0}s_{0} - F\left[\frac{3}{2}\alpha s_{i}s_{0}^{i}\right]$$

$$+r_{i}s_{0}^{i} + \frac{1}{2}s_{i|0}b^{i} - s_{0|b} - s_{0}r_{i}^{i} + \frac{3}{2}r_{0}^{i} + \frac{s_{i}s^{i}F}{2}$$

$$-r_{i}s_{0}^{i} + f_{b}s_{0}\right] - \frac{(n+7)}{F^{2}B^{2}}r_{00}^{2}$$

$$-\frac{1}{F}\left[2(n+3)r_{00}s_{0} - \frac{10r_{00}r_{0}}{B^{2}} + \frac{2r_{00|0} - 2f_{0}r_{00}}{B}\right]. \tag{2.18}$$

Proof. By equation (2.15) direct computation to (2.18).

Proof of Theorem 1.1: Let F be a quasi-Einstein kropina metric, by means quasi-Einstein and lemma 2.1, we have

$$Ric + \dot{\mathbf{S}} - (n-1)cF^2 = 0,$$
 (2.19)

where c = c(x) is a scalar function. Then we can get by

$$0 = -\frac{1}{B^{2}} \left((n+7) \left[\frac{sr_{00}}{\alpha} \right]^{2} + 2(n+2) \frac{sr_{00}s_{0}}{\alpha} - 10 \frac{sr_{00}r_{0}}{\alpha} \right.$$

$$+ (n-2)s_{0}^{2} + 2r_{00}r + r_{0}^{2} - 8r_{0}s_{0} + 2 \frac{\alpha rs_{0}}{s} \right)$$

$$- \frac{1}{B} \left(\frac{2sr_{00|0}}{\alpha} - r_{i}^{i}r_{00} - r_{00|b} - b^{i}r_{i0|0} + r_{0i}r_{0}^{i} + 3r_{0i}s_{0}^{i} \right.$$

$$+ 2s_{0|0} + \frac{3\alpha s_{i}s_{0}^{i}}{2s} + \frac{r_{i}s_{0}^{i}\alpha}{s} + \frac{b^{i}s_{i|0}\alpha}{2s} - \frac{s_{0|b}\alpha}{s} - \frac{s_{0}r_{i}^{i}\alpha}{s}$$

$$+ \frac{3s_{i}r_{0}^{i}\alpha}{2s} + \frac{s_{i}s^{i}\alpha^{2}}{2s^{2}} - \frac{r_{i}s_{0}^{i}\alpha}{s} - r_{0|0} + f_{b}r_{00} - \frac{2sf_{0}r_{00}}{\alpha}$$

$$+ \frac{f_{b}\alpha s_{0}}{s} - 2f_{0}s_{0} \right) - \frac{1}{s} \left(\alpha s_{0|i}^{i} + \frac{s_{j}^{i}s_{i}^{j}\alpha^{2}}{4s} - f_{x^{i}}s_{0}^{i}\alpha \right)$$

$$+ f_{0|0} + Ric_{\alpha} - (n-1)cF^{2}. \tag{2.20}$$

Now by multiplying (2.20) with $\beta^2 \alpha^4$, we can equation mentioned above by α as follows

$$0 = A_1 \alpha^8 + A_2 \alpha^6 + A_3 \alpha^4 + A_4 \alpha^2 + A_5, \tag{2.21}$$

where

$$A_{1} = -\frac{1}{2B}s_{i}s^{i} - \frac{1}{4}s_{j}^{i}s_{i}^{j} - (n-1)c,$$

$$A_{2} = \beta \left(\frac{1}{B}\left[-\frac{2}{B}rs_{0} - \frac{3}{2}s_{i}s_{0}^{i} - \frac{1}{2}b^{i}s_{i|0} + s_{0|b} + s_{0}r_{i}^{i} - \frac{1}{2}s_{i}r_{0}^{i}\right]\right),$$

$$-Bs_{0|i}^{i} + f_{x^{i}}s_{0}^{i} - f_{b}s_{0}\right],$$

$$A_{3} = -\left[\frac{1}{B}\left(\left[(n-2)s_{0}^{2} + 2r_{00}r + r_{0}^{2} - 8r_{0}s_{0}\right]\frac{1}{B} - r_{i}^{i}r_{00}\right]\right),$$

$$-r_{00|b} - b^{i}r_{i0|0} + r_{0i}r_{0}^{i} + 3r_{0i}s_{0}^{i}$$

$$+2s_{0|0} - r_{0|0} + f_{b}r_{00} + f_{0|0} + Ric_{\alpha}\beta^{2},$$

$$A_{4} = -2\left(\left[(n+2)s_{0} - 5r_{0}\right]\frac{1}{B}r_{00} + r_{00|0} - f_{0}r_{00}\right)\beta^{3},$$

$$A_{5} = -(n+7)\frac{1}{B^{2}}r_{00}^{2}\beta^{4}.$$

By this equation, we conclude that α^2 divides $-(n+7)\frac{1}{B^2}r_{00}^2\beta^4$. This means that there is scalar function $\sigma = \sigma(x)$ on M, where

$$r_{00} = \sigma \alpha^2. \tag{2.22}$$

We only consider the case (2.22). Then, one can obtain the expression of the following quantities

$$r_i^i = n\sigma, \quad r_{00} = \sigma\alpha^2, \quad r_0 = \sigma\beta, \quad r_{0i|0} = \sigma_0 y^i, \quad r = \sigma B,$$

$$r_{0|0} = \sigma^2\alpha^2 + \sigma_0\beta, \quad r_i s_0^i = \sigma s_0, \quad r_{0i} r_0^i = \sigma^2\alpha^2,$$

$$r_{0i|0}b^i = \sigma_0\beta, \quad r_{00|0} = \sigma_0\alpha^2.$$
(2.23)

By plugging all the above quantities into (2.21), we can get

$$0 = \alpha^8 A_1 + \alpha^6 A_2 + \alpha^4 A_3, \tag{2.24}$$

where

$$\begin{split} A_1 &= -\frac{1}{2B} \left[s^i s_i + \frac{s^i_j s^j_i}{2} + 2(n-1)c \right], \\ A_2 &= \beta \left[\frac{1}{B} \left[\sigma s_0 (n - \frac{7}{2}) - \frac{3}{2} s_i s^i_0 - \frac{1}{2} b^i s_{i|0} + s_{0|b} - f_b s_0 \right. \right. \\ & \left. + (n+2) \sigma^2 \beta - f_b \sigma \beta \right] - s_{0|i} + f_{x^i} s^i_0 \right], \\ A_3 &= \beta^2 \left[-\frac{1}{B^2} \left((n-2) s^2_0 + (n-2) \sigma^2 \beta^2 + 2(n-2) \sigma s_0 \beta \right) \right. \\ & \left. + \frac{1}{B} \left(2 s_{0|0} - 2 f_0 s_0 \right) + Ric_{\alpha} + f_{0|0} \right]. \end{split}$$

Case I: Assume $n \neq 2$. In this case, we have

$$Ric_{\alpha} = \frac{1}{B^{2}} \left[(n-2) \left(s_{0}^{2} - \sigma^{2} \beta^{2} \right) - 2(n-2) \sigma s_{0} \beta \right]$$
$$- \frac{1}{B} \left[2s_{0|0} - 2f_{0}s_{0} \right] - f_{0|0} + \eta \alpha^{2},$$
(2.25)

where $\eta = \eta(x)$ is a scalar function.

Case II: Assume n=2 then, we obtain

$$Ric_{\alpha} = -\frac{1}{B} \left[2s_{0|0} - 2f_0 s_0 \right] - f_{0|0} + \eta \alpha^2.$$
 (2.26)

This completes the proof.

Finally, we conclude the following.

Corollary 2.2. Let $F = \frac{\alpha^2}{\beta}$ be a Kropina metric on n-dimensional manifold M with volume form $dV = e^{-f}dV_{\alpha}$. Suppose F is quasi-Einstein. Then F quasi-Ricci flat if and only if it is satisfy

$$s_{i}s_{0}^{i} = \frac{1}{3} \left[(2n-7)\sigma s_{0} - b^{i}s_{i|\sigma} + 2s_{0|b} - 2f_{b}s_{0} + 2\beta \left(\sigma \left[(n+2)\sigma - f_{b} \right] - \eta \right) \right], \tag{2.27}$$

$$s^{i}s_{i} = -\frac{1}{2}s_{j}^{i}s_{i}^{j}. {2.28}$$

Proof. Suppose F be quasi-Einstein Kropina metric. By plugging quantities (2.22), (2.23), (2.25) into the following equation

$$Ric_F + \dot{\mathbf{S}} = 0. \tag{2.29}$$

We can get (2.27). Also by plugging quantities (2.22),(2.23) (2.26) into (2.29), we can get (2.28).

Acknowledgement. The authors would likes to thank referees for their helpful and detailed comments on this paper.

References

- D. Bao and C. Robles, Ricci and Flag Curvatures in Finsler Geometry, Riemann-Finsler Geometry, MSRI Publications, 2004.
- 2. S. Bacso, X. Cheng and Z. Shen, Curveture properties of (α, β) -metrics, Adv. Stud. Pure. Math 48, Mathematical Society of Japan, (2007), 73-110.
- 3. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- P. Antonelli and B. Han and J. Modayil, New results on two-dimensional constant sprays with an application to heterochrony. Nonlinear Analysis. 37(5) (1999), 545-566.
- 5. X. Cheng and Z. Shen and Y. F. Tian, A class of Einstein (α, β) -metrics. Isr. J. Math. 192(2012), 221-249.
- M. Ciss, I. A. Kaboye and A. S. Diallo, On a family of Einstein like Walker metrics, J. Finsler Geom. Appl. 6(2) (2025), 1-11.
- M. Gabrani, B. Rezaei and E. S. Sevim, On Einstein Finsler warped product metrics, J. Finsler Geom. Appl. 3(2) (2022), 91-98.
- 8. V. K. Kropina, On projective two-dimensional Finsler spacers with a special metric. Proceeding Seminar Vector Tensor Analysis. (1961), 277-292.
- 9. P. Finsler, *Uber Kurven und Flachen in allgemeinen Raumen*. (Dissertation, Gottingan 1918), Birkhauser Velag, Basel. 1951.
- J. Case and Y. Shu and G.Wei, Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29(2011), 93-100
- S.-I. Ohta, Finsler interposition inequalities. Calc. Var. Partial Differ. Equ. 36(2) (2009), 211-249.
- 12. S.-I. Ohta and K.-T. Sturm, *Heat flow on Finsler manifolds*. Commun. Pure Appl. Math. **62**(2009), 1386-1433.
- S. S. Chen and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics .Vol. 6. World Scientific Publishing Co. Pte. Ltd. (2005).

- H. Zhu, On a class of Quasi-Einstein Finsler metrics, The Journal of Geometric Analysis., 32(2022), 195.
- A. Tayebi and A. Nankali, On generalized Einstein Randers metrics. Int. J. Geom. Meth. Modern. Phys. (2015), 1550105.
- X. Zhang and Y. B. Shen, On Einstein-Kropina metrics, Differ. Geom. Appl. 31(1) (2013), 80-92.
- A. Tayebi, A. Nankali and B.Najafi, On the class of Einstein exponential-type Finsler metrics. J. Math. Phys. Analysis. Geom., 14(1) (2018), 100-114.
- A. Tayebi and M. Razgordani, Four families of projectively flat Finsler metrics with K=1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.
- L. Zhou, A local classification of a class of (α, β)-metrics with constant flag curvature, Differ. Geom. Appl. 28(2) (2010), 170-193.
- G. Wei and W. Wylie, Comparison geometry for the smooth metric measure spaces. Proceedings of the 4-th International Congress of China Mathmatics, vol. II, Hangzhou, China, 191-202.
- 21. Z.H. Zhang, Gradient Shrinking solitons with vanishing Weyl tensor, arXiv:0807.1582.
- 22. P. Peterson and W. Wylie, On the classification of gradient Ricci solitons, arXiv:0712.1298.
- M. Talebie, On the flag curvature of left invariant generalized m-Kropina metrics on some Lie groups, J. Finsler Geom. Appl. 5(2) (2024), 62-69.

Received: 31.03.2025 Accepted: 06.06.2025