
Journal of Finsler Geometry and its Applications

Vol. 6, No. 2 (2025), pp 93-102

https://doi.org/10.22098/jfga.2025.17089.1154

On quasi-Einstein Kropina metrics

Saeedeh Masoumia Bahman Rezaeia ∗ ID and Laya Ghasemnezhada

aDepartment of Mathematics Urmia University, Faculty of Science, Iran

E-mail:s.masoumi@urmia.ac.ir

E-mail:b.rezaei@urmia.ac.ir

E-mail:l.ghasemnezhad@urmia.ac.ir

Abstract. In this paper, we consider weakly quasi-Einstein Finsler metrics,

which is extension of Einstein conception. In fact, we investigate quasi-Einstein

Kropina metrics in both regular and singular case and we find the necessary

and sufficient conditions of quasi-Ricci flat kropina metrics.
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1. Introduction

In Finsler geometry, the Ricci curvature plays an important role. It is a

natural extension of the Ricci curvature in Riemannian geometry and defined

as the trace of the Riemman curvature. A Finsler metric F is called an Einstein

metric on an n-dimensional manifold M if it satisfies

Ric = (n− 1)c(x)F 2, (1.1)

where c = c(x) is a scalar function [6][7]. Finsler metric F is said Ricci

constant if F satisfies (1.1) where c is constant . Especially when c = 0,

F is called Ricci flat. There is another quantity which is determined by the

Busemann-Hausdorff volume form, that is the so-called distortion τ which the
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horizontal covariant derivative of τ gives a non-Riemannian quantity the S-

curvature.

In Finsler geometry, so-called (α, β)-metrics are those Finsler metrics which

can be expressed in the form F = αφ(s), where α := α(x, y) =
√
aij(x)yiyj is

a Riemannian metric and β := β(y) = bi(x)yi is a 1-form on M . In the past

several years, we have witnessed a rapid development in Finsler geometry. This

is partly because of the research on the (α, β)-metrics [2]. When φ(s) = 1
s , the

Finsler metric F = α2

β is called Kropina which was introduced by Berwald [8].

These metrics are called regular Finsler metrics if φ(s) is a smooth function on

(−b0, b0) satisfying

φ(s) > 0, φ(s)− (sφ′(s) + b2 − s2)φ′′(s) > 0, |s| < b < b0. (1.2)

and β satisfies ||β||α < b0 (see [23]). If φ does not apply condition (1.2),

then Finsler metrics have been called singular. Singular Finsler metrics is

introduced by Z. Shen [3, 4]. In recent years, many scholars have conducted a

great deal of research on them. Cheng-Shen-Tian proved that the polynomial

(α, β)-metric is an Einstein metric if and only if it is Ricci-flat [5]. In 2012,

Zhang and Shen specified the condition of Einstein Kropina metric . They

proved a non-Riemannian Kropina metric F = α2/β with constant Killing

from β on a manifold M with dimensional n ≥ 2, is an Einstein metric if

and only if Reimannian metric α is an Einstein metric [16]. In Reimannian

geometry, J. Case, Y .Shu and G .Wei studied m-quasi-Einstein which is a

generalization of Einstein metrics [20, 21, 22, 10]. The Ricci-curvature and S-

curvature have important and fundamental topic in Finsler geometry [15, 18].

Recently, Ohta introduced a definition of N -Ricci curvature in Finsler geometry

[11]. This concept is generalized by H.Zhu, who characterize quasi-Einstein

metrics. He found the structure of quasi-Ricci flat square metric which is the

famous Berwalds metric [14].

Finsler manifold (M,F ) is called N - weakly quasi-Einstein if it satisfies

Ric+
.

S − S2

N − n
= (n− 1)

(
c+

3θ

F

)
F 2,

where
.

S is the covariant derivative of S along a geodesic of F and c = c(x) is

scalar function and θ is a 1- form on M . If θ = 0 and N = ∞, then Finsler

metric F is called quasi-Einstein and if c = 0 is said quasi-Ricci flat.

In this paper, we are going to study Kropina metrics of quasi-Einstein and

quasi-Ricci flat cases. In fact, the main theorem is as follows:

Theorem 1.1. Let F = α2

β be a Kropina metric on n-dimensional manifold

M with volume form dVF = e−fdVα. Then F is quasi-Einstein if and only if

sijs
j
i = −2

[
2c(n− 1) + sisi

]
, (1.3)

Case I: Assume n 6= 2
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• if F be regular then

Ricα =
1

B2

[
(n− 2)

(
s20 − σ2β2

)
− 2(n− 2)σs0β

]
− 1

B

[
2s0|0 − 2f0s0

]
− f0|0 + ηα2; (1.4)

• if F be singular then

Ricα = (n− 2)

(
s20 − σ2β2

)
− 2(n− 2)σs0β

−2s0|0 + 2f0s0 − f0|0 + ηα2, (1.5)

Case II: Assume n = 2

• if F be regular then

Ricα = − 1

B

[
2s0|0 − 2f0s0

]
− f0|0 + ηα2; (1.6)

• if F be singular then Ricα = −2s0|0 + 2f0s0 − f0|0 + ηα2,

where η = η(x) is function on M .

2. Preliminaries

In 1918, Finsler metrics studied by P.Finsler’s [9]. Let F be a Finsler metric

on manifold M , a spray is a smooth vector field G on TM0 which is expressed

by

G(x, y) := yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where geodesic coefficients defined by

Gi :=
1

4
gil
[
[F 2]xmyly

m − [F 2]xl

]
,

and Gi(x, λy) = λ2Gi(x, y), λ > 0.

For Finsler metric F on manifoldM , the Riemann curvatureRy = Rik(y)∂G
i

∂xi ⊗
dxk of F is defined by

Rik := 2
∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (2.1)

Ricci curvature is the trace of the Riemann curvature, which is called by

Ric := Rmm. (2.2)

For a Finsler metric F , let

Rik = cF 2
(
δik − F−1Fykyi

)
. (2.3)

Then F is called of scalar curvature, where c = c(x, y) is function on TM .
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The Busemann-Hausdorff volume form dVBH(x) := σBHdx
1 ∧ ......∧ dxn on

Finsler space (M,F ) is defined by

σBH(x) :=
wn{

V ol(yi) ∈ Rn|F
(
x, yi ∂

∂xi |x
)} ,

where V ol {.} denotes the Euclidean volume function and wn := V ol(Bn(1))

denotes the unit ball in Rn. There is the scalar function τ = τ(x, y) on TM0

associated with the Busemann-Hausdorff volume form dVBH := σBH(x)dx1 ∧
· · · ∧ dxn is called the distortion and is as following

τ(x, y) := ln
[√det(gij(x, y)

)
σBH(x)

]
.

The S-curvature is given by

S(x, y) :=
d

dt

[
τ(c(t), c.(t))

]
|0,

here c(t) is the geodesic with c(0) = x and c.(x) = y.

For Finsler metric F on manifold M , the S-curvature is defined by

S(x, y) :=
∂Gl

∂yl
− yl

σBH

∂(σBH)

∂xl
. (2.4)

Let F be metric Finsler with volume form dVF = e−fdVBH on TM0. Then

quasi-Ricci curvature is called by

Qric := Ric+
.

S, (2.5)

where
.

S is the covariant derivative of S along geodesic of F [14, 19]. The

(α, β)-metric can be expressed by the form

F := αφ(s), s =
β

α
. (2.6)

It is known that is positive and strongly convex on TM0 if and only if

φ(s)− sφ′(s) +
(
B − s2

)
φ′′(s), (2.7)

where B := aijbibj = ||B||α2.

The spray coefficients of (α, β)-metrics are given by [13]

Gi = Giα +Qi, (2.8)
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where

Qi := αQsi0 + θ

(
r00 − 2αQs0

)
yi

α
+ ψ

(
r00 − 2αQs0

)
bi, (2.9)

Q =
φ′

φ− sφ′
, θ =

(
φ− sφ′

)
φ′ − sφ′φ′′

2φ

[
φ− sφ′ + (B − s2)φ′′

] (2.10)

ψ =
φ′′

2

[
φ− sφ′ + (B − s2)φ′′

] , (2.11)

Giα =
1

4
aij
[
[α2]xlyjy

k − [α2]xj

]
. (2.12)

are the spray coefficients of the Riemannian metric α. The spray coefficients

of F = α2

β are given by

Gi = Giα + αQsi0 + θ(r00 − 2αQs0)
yi

α
+ Ψ(r00 − 2αQs0)bi, (2.13)

where

Q = − 1
2s ,

ψ = 1
2B ,

θ = − s
B .

The S-curvature for (α, β)-metric is given by

S := 2ψ
(
r0 + s0

)
+
(

(n+ 1)θ + ψs
(
B − s2

))(
r00 − 2αQs0

) 1

α
+f0, (2.14)

where f0 := fxiyi.

We use some notations for (α, β)-metrics as follows,

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i), r00 = rijy

iyj , si0 = aijsjky
k,

ri = birji, si = bjrji, s0 = siy
i, ri = aijrj , si = aijsj , r = biri,

where ”|” denotes the covariant derivative with respect to Levi-Civita connec-

tion of α, (aij) := (aij)
−1 and bi := aijbj .

The Riemann curvature of Kropina metric as follows

RicF = Ricα + Tnn , (2.15)
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where

Tnn : = −F 2

[
1

2B
sis

i +
1

4
sijs

j
i

]
+ F

[
2n− 3

2B
sis

i
0 −

1

B2
rs0

− 1

2B

(
2ris

i
0 + bisi|0 − 2s0|b − 2s0r

i
i + 3sir

i
0

)
− si0|i

]
+

1

B

[(
riir00 − biri0|0 − r0iri0

)
+
(
2n− 1

)
r0is

i
0 +

(
n− 2

)
s0|0

]
− 1

B2

[(
n− 2

)
s20 +

(
r00r − r20

)
+ 2
(
2n− 3

)
r0s0

]
+
n− 1

FB2

[
2r00s0 − 4r00r0 +Br00|0

]
+

3(n− 1)

B2F 2
r200. (2.16)

Now we obtain
.

S for Kropina metric as following

.

S :=
F

B

[
− rs0

B
− nsisi0 + ris

i
0 +Bfxisi0 − s0fb

]
− 1

B2

[
r00r + 2r20 −B

(
2(2n+ 1)r0s0 − 2(n+ 1)r0is

i
0

−ns0|0 + r0|0 − fbr00 + s02f0

)
−B2f0|0

]
+

1

B2F

[
− 4(n+ 1)

F
r200 − 2(2n+ 1)r00s0

+B
(

2(2n+ 3)r00r0 − (n+ 1)r00|0 + 2f0r00

)]
. (2.17)

Lemma 2.1. Let F = α2

β be a Kropina metric an n-dimensional manifold M

with volume form dV = e−fdVα. Then quasi-Ricci curvature of F is given by

Ric+
.

S = Ricα + f0|0 −
sijs

j
iF

2

4
+ F

(
fxisi0 − si0|i

)
− 1

B2

(
(n− 2)s20

+2r00r + r20 − 8r0s0 + 2rs0F
)

+
1

B

[
riir00 + r00|b + ri0|0b

i

−r0iri0 − 3r0is
i
0 − 2s0|0 + r0|0 − fbr00 + 2f0s0 − F

[3
2
αsis

i
0

+ris
i
0 +

1

2
si|0b

i − s0|b − s0rii +
3

2
ri0 +

sis
iF

2

−risi0 + fbs0
]]
− (n+ 7)

F 2B2
r200

− 1

F

[
2(n+ 3)r00s0 −

10r00r0
B2

+
2r00|0 − 2f0r00

B

]
. (2.18)

Proof. By equation (2.15) direct computation to (2.18). �
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Proof of Theorem 1.1: Let F be a quasi-Einstein kropina metric, by means

quasi-Einstein and lemma 2.1, we have

Ric+
.

S −(n− 1)cF 2 = 0, (2.19)

where c = c(x) is a scalar function. Then we can get by

0 = − 1

B2

(
(n+ 7)

[sr00
α

]2
+ 2(n+ 2)

sr00s0
α

− 10
sr00r0
α

+(n− 2)s20 + 2r00r + r20 − 8r0s0 + 2
αrs0
s

)
− 1

B

(
2sr00|0

α
− riir00 − r00|b − biri0|0 + r0ir

i
0 + 3r0is

i
0

+2s0|0 +
3αsis

i
0

2s
+
ris

i
0α

s
+
bisi|0α

2s
−
s0|bα

s
− s0r

i
iα

s

+
3sir

i
0α

2s
+
sis

iα2

2s2
− ris

i
0α

s
− r0|0 + fbr00 −

2sf0r00
α

+
fbαs0
s
− 2f0s0

)
− 1

s

(
αsi0|i +

sijs
j
iα

2

4s
− fxisi0α

)
+f0|0 +Ricα − (n− 1)cF 2. (2.20)

Now by multiplying (2.20) with β2α4, we can equation mentioned above by α

as follows

0 = A1α
8 +A2α

6 +A3α
4 +A4α

2 +A5, (2.21)

where

A1 = − 1

2B
sis

i − 1

4
sijs

j
i − (n− 1)c,

A2 = β

(
1

B

[
− 2

B
rs0 −

3

2
sis

i
0 −

1

2
bisi|0 + s0|b + s0r

i
i −

1

2
sir

i
0

−Bsi0|i + fxisi0 − fbs0
])
,

A3 = −
[

1

B

([
(n− 2)s20 + 2r00r + r20 − 8r0s0

] 1

B
− riir00

−r00|b − biri0|0 + r0ir
i
0 + 3r0is

i
0

+2s0|0 − r0|0 + fbr00

)
+ f0|0 +Ricα

]
β2,

A4 = −2

(
[(n+ 2)s0 − 5r0]

1

B
r00 + r00|0 − f0r00

)
β3,

A5 = −(n+ 7)
1

B2
r200β

4.
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By this equation, we conclude that α2 divides −(n + 7) 1
B2 r

2
00β

4. This means

that there is scalar function σ = σ(x) on M , where

r00 = σα2. (2.22)

We only consider the case (2.22). Then, one can obtain the expression of the

following quantities

rii = nσ, r00 = σα2, r0 = σβ, r0i|0 = σ0y
i, r = σB,

r0|0 = σ2α2 + σ0β, ris
i
0 = σs0, r0ir

i
0 = σ2α2,

r0i|0b
i = σ0β, r00|0 = σ0α

2. (2.23)

By plugging all the above quantities into (2.21), we can get

0 = α8A1 + α6A2 + α4A3, (2.24)

where

A1 = − 1

2B

[
sisi +

sijs
j
i

2
+ 2(n− 1)c

]
,

A2 = β

[
1

B

[
σs0(n− 7

2
)− 3

2
sis

i
0 −

1

2
bisi|0 + s0|b − fbs0

+(n+ 2)σ2β − fbσβ
]
− s0|i + fxisi0

]
,

A3 = β2
[
− 1

B2

(
(n− 2)s20 + (n− 2)σ2β2 + 2(n− 2)σs0β

)
+

1

B

(
2s0|0 − 2f0s0

)
+Ricα + f0|0

]
.

Case I: Assume n 6= 2. In this case, we have

Ricα =
1

B2

[
(n− 2)

(
s20 − σ2β2

)
− 2(n− 2)σs0β

]
− 1

B

[
2s0|0 − 2f0s0

]
− f0|0 + ηα2, (2.25)

where η = η(x)is a scalar function.

Case II: Assume n = 2 then, we obtain

Ricα = − 1

B

[
2s0|0 − 2f0s0

]
− f0|0 + ηα2. (2.26)

This completes the proof. �

Finally, we conclude the following.
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Corollary 2.2. Let F = α2

β be a Kropina metric on n-dimensional manifold

M with volume form dV = e−fdVα. Suppose F is quasi-Einstein. Then F

quasi-Ricci flat if and only if it is satisfy

sis
i
0 =

1

3

[
(2n− 7)σs0 − bisi|o + 2s0|b − 2fbs0

+2β
(
σ
[
(n+ 2)σ − fb

]
− η
)]
, (2.27)

sisi = −1

2
sijs

j
i . (2.28)

Proof. Suppose F be quasi-Einstein Kropina metric. By plugging quantities

(2.22), (2.23), (2.25) into the following equation

RicF+
.

S= 0. (2.29)

We can get (2.27). Also by plugging quantities (2.22),(2.23) (2.26) into (2.29),

we can get (2.28). �
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