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Abstract. This paper investigates specific types of concircular motions within

a generalized fifth recurrent Finsler space, focusing on Cartan’s fourth curva-

ture tensor Ki
jkh in sense of Berwald. We established a new definition for the

concircular vector field σh and studied the direction of the force acting on this

field using the Lie derivative. In addition, we proved that the concircular vec-

tor field σh and the recurrence vector λm are equal under certain condition.

The mathematical formulas for the Lie-derivative of recurrence vector λm and

Lie-derivative of the product of two concircular vector fields within this space

have been obtained. In conclusion, we have provided applications and practical

examples that illustrate some of the results.
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1. Introduction

A Finsler space is an extension of Riemannian space, Riemann studied the

distance between points in n−dimensions using only positional coordinates,

while Finsler generalized Riemann’s idea and studied the distance between

points in n−dimensions by using two coordinates, positional and directional.

The basic concepts of Finsler geometry are carefully studied and systematically

compared with those of Riemannian geometry, highlighting both the founda-

tional similarities and the key differences between these two geometric frame-

works. Furthermore, recent studies and advancements in the field, as presented

by [2, 12, 13].

The concepts of concircular vector fields and the Lie derivative provide pow-

erful tools to analyze geometric transformations and invariant properties of

manifolds, contributing significantly to both pure mathematical theory and

applications in theoretical physics.

The Lie - derivative evaluate the rate of change of a vector field or a tensor

field along the flow of another vector or tensor field, it is named after Souphus

Lie who introduced it in the 19th century. Some remarks on the Lie-derivative

introduced by Gouin [9]. Several identities on Lie-recurrent Finsler space in-

troduced by authors [14, 16]. Further, Opondo [11] studied Lie-derivative in

recurrent and bi-recurrent Finsler space.

Al-Qashbari and et al. ([3]–[7]) have significantly advanced our understand-

ing of generalized BK-fifth recurrent Finsler space (GBK − 5RFn), especially

through the lens of projective transformations, Lie derivatives, and the inher-

itance properties of various curvature tensors, including the Kulkarni–Nomizu

product and M -projective tensors.

Additional studies have explored related curvature structures such as W9-

curvature tensor within the framework of Lorentzian para-Sasakian manifold

by Singh and et al. [15]. Verma [17] established some transformations in Finsler

space and special concircural affine motion. The generalized Finsler spaces of

different orders for various curvature tensors and the decomposition of them in

Berwald sense discussed by [8, 10].

The objective of this paper is obtaining mathematical formulas that repre-

sent the concircular motions and describe the direction of the force acting on a

field with the directional and extensional changes that occur to this field during

the force’s influence in generalized fifth recurrent Finsler space. This helps us

understand the movement of planets around a star in an elliptical orbit.

2. Preliminaries

This section introduces important equations that serve as the foundation

for the main findings. The generalized BK−fifth recurrent Finsler space that
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denoted as GBK − 5RFn, and satisfies the following relation [7]

BsBqBlBnBmK
i
jkh = asqlnmK

i
jkh + bsqlnm

(
δihgjk − δikgjh

)
(2.1)

− csqlnm
(
δihCjkn − δik Cjhn

)
− dsqlnm

(
δihCjkl − δik Cjhl

)
− esqlnm

(
δihCjkq − δik Cjhq

)
− 2bqlnmy

rBr

(
δihCjks − δik Cjhs

)
,

where Ki
jkh 6= 0.

BsBqBlBnBmH
i
kh = asqlnmH

i
kh + bsqlnm

(
δihyk − δikyh

)
. (2.2)

The Cartan’s fourth curvature tensor Ki
jkh in recurrent Finsler space is defined

as

BmK
i
jkh = λmK

i
jkh, (2.3)

where the non-zero vector λm is called recurrence vector .

The non-zero metric tensor gij and Kronecker delta δih are satisfying the rela-

tions:

gijg
ik = δkj =

{
1 if j = k,

0 if j 6= k.
(2.4)

The Berwald covariant derivatives of the vectors yi, yi are vanishing, i.e.{
a) Bky

i = 0

b) Bkyi = 0.
(2.5)

The curvature tensor Ki
jkh, h(v)-torsion tensor Hi

kh, deviation tensor Hi
h, Ricci

tensor Kjk, curvature vector Hk, curvature scalar H and vector yj satisfy the

following relations 

a) Ki
jkh y

j = Hi
kh.

b) Ki
jkh = Rijkh − CijsHs

kh.

c) Hr
kr = Hk.

d) Hr
r = (n− 1)H.

e) Hi
khy

k = Hi
h.

f) Kr
jkr = Kjk.

g) Kjky
j = Hk.

h) Kjky
j = Rjky

j .

i) yj = gjkyk.

j) Rjk g
jk = R.

k) Hi
khyi = 0.

(2.6)
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A Lie - derivative evaluate the rate of change of a vector field or a tensor field

along the smooth vector field vi(x). The Lie-derivative of a general mixed

tensor field T ijkh(x, ẋ) expressed in the form [3]

LvT
i
jkh = vmBmT

i
jkh − TmjkhBmv

i + T imkhBjv
m + T ijmhBkv

m (2.7)

+T ijkmBhv
m + ∂̇mT

i
jkhBrv

myr,

where vi(x) 6= 0 is a contravariant vector field independent of directional argu-

ment and dependent on positional coordinates xi only and Bjv
m = 0. The Lie

- derivative of the metric tensors gij is vanishing, i.e.

Lvgij = 0. (2.8)

The concircular motion it is the motion of a particle in a way that makes

it follow curved paths that maintain the form of generalized circles around a

central point.the sufficient condition for motion to become concircular is [17]

Bmσh = σh σm + Lvghm, (2.9)

where the non-zreo vector field σh = σh(xi) is called concircular vector field.

Transvecting (2.3) by yj , then using [(2.5)a] and [(2.6)a] in result equation, we

get

BmH
i
kh = λmH

i
kh. (2.10)

The above equation means that the h(v)-torsion tensor Hi
hk behaves as recur-

rent in Finsler space.

3. Main Results

In this section, we examine several theorems of concircular motions in gen-

eralized fifth recurrent Finsler space. We explore varoius identities for the

concircular vector field σh. Multiplying (2.3) by the concircular vector field σh,

we get

Bm(σhK
i
jkh)−Ki

jkh(Bmσh) = σhλmK
i
jkh.

Using (2.8) and (2.9) in above equation, we get

Bm(σhK
i
jkh)−Ki

jkhσhσm = σhλmK
i
jkh.

Which can be written as

Ki
jkh =

1

σhλm

[
Bm(σhK

i
jkh)−Ki

jkhσhσm

]
.

Using above equation in right side of (2.1), then using (2.4) in result equation,

we get

BsBqBlBnBmK
i
jkh =

asqlnm
σhλm

[
Bm(σhK

i
jkh)−Ki

jkhσhσm

]
. (3.1)
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Multiplying (3.1) by yj , using [(2.5)a], [(2.6)a], we get

BsBqBlBnBmH
i
kh =

asqlnm
σhλm

[
Bm(σhH

i
kh)−Hi

khσhσm

]
. (3.2)

Multiplying above equation by yK , using [(2.5)a],[(2.6)e], we get

BsBqBlBnBmH
i
h =

asqlnm
σhλm

[
Bm(σhH

i
h)−Hi

hσhσm

]
. (3.3)

Contracting the indices i and h in (3.2) and using [(2.6)c], we get

BsBqBlBnBmHk =
asqlnm
σhλm

[
Bm(σhHk)−Hkσhσm

]
. (3.4)

Contracting the indices i and h in (3.3) and using [(2.6)d], we get

BsBqBlBnBmH =
asqlnm
σhλm

[
Bm(σhH)−Hσhσm

]
. (3.5)

Thus, we conclude:

Theorem 3.1. In GBK − 5RFn, the Berwald covariant derivative of fifth-

order for the Cartan’s fourth curvature tensor Ki
jkh, h(v)-torsion tensor Hi

kh,

deviation tensor Hi
h, curvature vector Hk and curvature scalar H are given by

(3.1), (3.2), (3.3), (3.4) and (3.5) respectively, represent concircular motions.

In next theorem we obtain new relations for the concircular vector field σh
and specific types of the same concircular motions for certain curvature tensors.

Using (2.4) in (2.1), we get

BsBqBlBnBmK
i
jkh = asqlnmK

i
jkh.

Using above equation in (3.1), we get

σh =
1

λmKi
jkh

[
Bm(σhK

i
jkh)−Ki

jkhσhσm

]
.

Which can be written as

σh =
Bm(σhK

i
jkh)

(λm + σm)Ki
jkh

. (3.6)

Thus, we conclude

Theorem 3.2. In GBK−5RFn, the concircular vector field is given by (3.6).

Contracting the indices i and h in (3.1) and using [(2.6)f], we get

BsBqBlBnBmKjk =
asqlnm
σhλm

[
Bm(σhKjk)−Kjkσhσm

]
.

Multiplying above equation by yj and using [(2.5)a], we get

BsBqBlBnBm(Kjky
j) =

asqlnm
σhλm

[
Bm(σhKjky

j)−Kjky
jσhσm

]
.

Using [(2.6)g] in the right side of above equation, we get

BsBqBlBnBm(Kjky
j) =

asqlnm
σhλm

[
Bm(σhHk)−Hkσhσm

]
.
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In view of above equation and (3.4), we get

BsBqBlBnBmHk = BsBqBlBnBm(Kjky
j).

Using [(2.6)h,i,j] in above equation, we get

BsBqBlBnBmHk = BsBqBlBnBm(Ryk). (3.7)

Thus, we conclude

Theorem 3.3. In GBK−5RFn, the Berwald covariant derivative of fifth-order

for the curvature vector Hk and tensor (Ryk) represent the same concircular

motion.

Using [(2.6)b] in the left side of (3.1), we get

BsBqBlBnBm(Rijkh − CijsHs
kh) =

asqlnm
σhλm

[Bm(σhK
i
jkh)−Ki

jkhσhσm].

Which can be written as

BsBqBlBnBmR
i
jkh =

asqlnm
σhλm

[
Bm(σhK

i
jkh)−Ki

jkhσhσm

]
, (3.8)

if

BsBqBlBnBm(CijsH
s
kh) = 0. (3.9)

In view of (3.1) and (3.8), we get

BsBqBlBnBmK
i
jkh = BsBqBlBnBmR

i
jkh.

Thus, we conclude

Theorem 3.4. In GBK−5RFn, the Berwald covariant derivative of fifth-order

for the Cartan’s fourth curvature tensor Ki
jkh and Cartan’s third curvature

tensor Rijkh represent the same concircular motion [provided (3.9) holds].

Using (2.4) in (2.2), then using the result equation in (3.2), we get

σhλmH
i
kh =

[
Bm(σhH

i
kh)−Hi

khσhσm

]
.

Using (3.6) and [(2.6)a] in left side of above equation, we get

yj [Bm(σhK
i
jkh)−Ki

jkhσhσm] =
[
Bm(σhH

i
kh)−Hi

khσhσm

]
.

Multiplying above equation by yi, using [(2.5)b] and [(2.6)k], we get

yjyi

[
Bm(σhK

i
jkh)−Ki

jkhσhσm

]
= 0.

Which can be written as[
Ki
jkhBmσh + σhBmK

i
jkh −Ki

jkhσhσm

]
= 0.
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Using (2.3) in above equation, we get[
Ki
jkhBmσh + σhλmK

i
jkh −Ki

jkhσhσm

]
= 0.

Using (2.8) and (2.9) in above equation, then taking the Lie-derivative of both

sides of result equation, we get

λmK
i
jkhLvσh + σhK

i
jkhLvλm + σhλmLvK

i
jkh = 0.

Using (2.7) in above equation, we get

λmK
i
jkhLvσh = −σhKi

jkhv
mBmλm − σhλmvmBmK

i
jkh.

Using (2.3) in above equation, we get

Lvσh = −σhτm(Bmλm + λ2
m), (3.10)

where τm = vm

λm
. Thus, we conclude

Theorem 3.5. In GBK − 5RFn, the force acting on the flow of concircular

vector field σh is opposite to the direction of that field’s flow and given by (3.10).

Using (2.4) in (2.1), we get

asqlnm =
BsBqBlBnBmK

i
jkh

Ki
jkh

.

Using above equation in (3.2), we get

BsBqBlBnBmH
i
kh =

BsBqBlBnBmK
i
jkh

σhλmKi
jkh

[
Bm(σhH

i
kh)−Hi

khσhσm

]
.

Using [(2.6)a] and [(2.5)a] in left side of above equation, we get

yjBsBqBlBnBmK
i
jkh =

BsBqBlBnBmK
i
jkh

σhλmKi
jkh

[
Bm(σhH

i
kh)−Hi

khσhσm

]
.

Which can be written as

σhλmK
i
jkhy

j =
[
Bm(σhH

i
kh)−Hi

khσhσm

]
.

Using [(2.6)a] in above equation, we get

σhλmH
i
kh =

[
Bm(σhH

i
kh)−Hi

khσhσm

]
.

Or

σhλmH
i
kh =

[
Hi
khBmσh + σhBmH

i
kh −Hi

khσhσm

]
.

Using (2.10) in above equation, we get

Hi
khσhσm = Hi

khBmσh.

Now, if the concircular vector field σh behaves as recurrent, then above

equation can be written as

σm = λm. (3.11)
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Thus, we conclude

Theorem 3.6. In GBK − 5RFn, the concircular vector field σm and the re-

currence vector λm have the same extension and direction if this concircular

vector field with other lower components behaves as recurrent.

Applying (2.7) to the concircular vector field σh, we get

Lvσh = vmBmσh + σmBhv
m + ∂̇mσhBrv

myr,

Since Bjv
m = 0, then above equation can be written as

Lvσh = vmBmσh.

Using above equation in (3.10), we get

vmBmσh = −σhτm(Bmλm + λ2
m).

Which can be written as

vmBmσh + σhτ
mλ2

m = −σhτm(Bmλm).

If the concircular vector field σh behaves as recurrent, then above equation can

be written as

λmσh(vm + τmλm) = −σhτm(Bmλm).

Substituting the value of the tensor τm in above equation, we get

vm(Bmλm) = −2λ2
mv

m.

Applying (2.7) to the recurrence vector λm and using the result equation in

above equation, we get

Lvλm = −2λ2
mv

m. (3.12)

Thus, we conclude

Theorem 3.7. In GBK − 5RFn, the force acting on the flow of recurrence

vector λm is opposite to the direction of that vector’s flow and given by (3.12)

if the concircular vector field σh behaves as recurrent.

Using (2.7) in (3.12), then using (3.11) in the left side of result equation, we

get

Bmσm = −2λ2
m.

Multiplying above equation by the concircular vector field σh, we get

Bm(σhσm)− σmBmσh = −2σhλ
2
m.

Using (2.8) and (2.9) in above equation, we get

Bm(σhσm) = σ2
mσh − 2σhλ

2
m

Multiplying above equation by the contravariant vector field vm, we get

vmBm(σhσm) = vmσ2
mσh − 2vmσhλ

2
m.
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Using (3.11) in the right side of above equation, we get

vmBm(σhσm) = −vmσ2
mσh.

Applying (2.7) to the tensor (σhσm) and using the result equation in above

equation, we get

Lv(σhσm) = −vmσ2
mσh. (3.13)

Thus, we conclude

Theorem 3.8. In GBK − 5RFn, the Lie - derivative of the product of two

concircular vector fields is given by (3.13).

4. Applications

In the motion of a satellite around the Earth, the fundamental force acting is

the gravitational force between the Earth and the satellite, and the direction of

this force is always towards the Earth. Concircular motion around the Earth

can be considered a special case of elliptical orbits, where the radius is not

constant. During the satellite’s orbit in its elliptical path, the direction of its

motion changes continuously. The Earth’s gravitational force is responsible for

this change in direction, as it constantly pulls the satellite towards the Earth,

causing its path to curve.

Let the fifth slope of the Cartan’s fourth curvature tensor Ki
jkh represents

an elliptical path during the satellite’s orbit around the Earth, in this path,

the satellite does not move at a constant speed, when it is closer to the Earth,

its speed is greater and the gravity is stronger, and when it is farther away,

its speed is lower and the gravity is weaker. This represents a change in the

magnitude of its velocity (expansion and contraction), and the extent and di-

rection of this path are the same as the extent and direction of the fifth slope

of the Cartan’s third curvature tensor Rijkh when condition (3.9) is met. Now

we mention some practical examples to illustrate the results.

• Example 1: If vm = λm and σm = c, where c is constant then the

Lie-derivative of the concircular vector field σh given by

Lvσh = −Cσh,

where C = c2.

By [Theorem (3.5) and Theorem (3.6)].

• Example 2: The value of Lv(σhσm) = 1, when Lvσh = −1
σm

.

By [Theorem (3.8)].

• Example 3: If τm = n, then the Lie-derivative of the recurrence vector

λm given by

Lvλm = −2nλ3
m.

By [Theorem (3.7)].
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5. Conclusions

This research paper has yielded several equations representing concircular

motions across various curvature tensors in generalized fifth recurrent Finsler

space. We have successfully defined the concircular vector field σh and eluci-

dated how its direction changes under the influence of an applied force by using

Lie-derivative. Furthemore, we found an equality relation between the concir-

cular vector field σh and the recurrence vector λm under specific conditions.

and derived a new relations representing the Lie-derivative of the recurrence

vector λm and the Lie-derivative of the product of two concircular vector fields

in GBK − 5RFn.

Acknowledgment: The authors are grateful for Professor Akbar Tayebi for
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