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Abstract. In this research paper, we have studied the Z-Shen square metric

under the condition that the 1-form β is a Killing form of constant length.

We have derived the explicit expressions for the Ricci and Riemann curvatures

associated with this metric. Furthermore, we have investigated the special

characteristics of projectively flat Z-Shen square metrics that possess isotropic

S-curvature.
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1. Introduction

A Finsler space is fundamentally defined by a generating function or Finsler

metric function F(x, y), which is specified on the tangent bundle TM of a dif-

ferentiable manifold M. The function F is positively homogeneous of degree
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one in the directional variable y. The concept of Finsler geometry was origi-

nally introduced by Paul Finsler in 1918. In 1854, Bernhard Riemann proposed

the Riemannian metric in the form ds2 = gijdx
idxj , which quantifies the infin-

itesimal distance between nearby points x and x + y. The Finsler generating

function F(x, y) is required to satisfy the following essential properties:

(i) F is continuous on TM and smooth on slit tangent bundle ˜TM = TM \
{(x, y) ∈ TM|F(x, y) = 0}.
(ii) F is positively homogeneous of degree one in its second argument: F(x, ky) =

kF(x, y) for all k > 0.

(iii) For each point x ∈M, the associated fundamental metric tensor

gij(x, y) =
1

2

∂2F2

∂yi∂yj

is non-singular, where indices i, j = 0, 1, 2, . . . , n− 1.

A pair (M,F) defines a Finsler manifold, where the bilinear form g =

gij(x, y)dxidxj is known as the Finsler metric tensor, when the function F
satisfies the above criteria, it is referred as a regular Finsler metric.

A Finsler metric function F(x, y) on an n-dimensional manifold Mn is re-

ferred to as an (α, β)-metric [3], denoted by F(α, β), in terms of α and β, where

α2 = aijy
iyj represents a Riemannian metric and β = bi(x)yi is a 1-form on

Mn. Z. Shen introduced a special class of (α, β)-metrics, defined by the formula

F = (α+β)2

α [2], [8]. Studying the Z. Shen’s square metric with such a 1-form is

useful because it allows mathematicians to explore geometries with high sem-

metry and explicit structure, leading to potential applications in physics and

differential geometry (e.g. geodesics, curvature properties, integrable systems).

The Z. Shen’s square metric repersent a significant class of Finsler metrics

with deep geometric structure. Investigating its behaviour under the presence

of a Killing 1-form of constant length enables the analysis of highly semmetric

Finsler spaces, offerenig insights in to curvature praperties and links to classi-

cal Riemannian results. This work contributes to ongoing efforts to understand

the geometric and topological implications of such metrics.

Ricci curvature plays a crucial role in the geometry of Finsler manifolds and

is defined as the trace of the Riemann curvature on each tangent space. In

addition, Z. Shen [4] introduced the concept of S-curvature, a non-Riemannian

invariant that measures the rate of change of the volume form along geodesics

in a Finsler space. The S-curvature vanishes in Berwald spaces, including

Riemannian manifolds.

Several researchers [1], [2], [5], [6], [8], [9] have explored various properties of

(α, β)-metrics and achieved significant results, particularly in the study of pro-

jectively flat Finsler spaces, S-curvature, and Ricci curvature. The Riemannian
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curvature is a family of linear maps Ry = Rik
∂
∂xi × dxk : TxMn → TxMn, de-

fined by

Rik = 2
∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gi

∂yk
. (1.1)

The Ricci curvature and Ricci scalar are defined by

Ric = Rii, R =
1

n− 1
Ric. (1.2)

The S-curvature of a Finsler space Fn = (Mn,F) is a scalar function S :

TMn → R defined by [4]

S =
∂Gm

∂ym
− ym ∂(lnσF )

∂xm
(1.3)

where

σF =
V ol(Bn)

V ol{(yi) ∈ Rn : F(x, yi ∂
∂xi ) : x < 1}

.

A Finsler space Fn = (Mn,F) is said to have isotropic S-curvature if there

exists a smooth function c = c(x) on Mn such that

S = (n+ 1)cF .

The E-curvature of a Finsler space Fn = (Mn,F) is a scalar function

E : TpMn × TpMn → R

defined by [10] as

Eij =
1

2
Syiyj .

A Finsler space is also said to have isotropic E-curvature if there exists a

smooth function c = c(x) on Mn such that

E = (n+ 1)cFyiyj .

2. Riemann curvature and Ricci- curvature of Z-Shen’s square metric

For the Z. Shen’s square metric F = (α+β)2

α on an n- dimensional manifold

Mn, the geodesic coefficients Gi of F are related to the coefficients αGi of α by

Gi =α Gi + Pyi +Qi, (2.1)

where

P = − 1

b2
(s+ F−1r00), (2.2)

Qi = −1

2

[
(Fsi0 −

1

b2
(Fs0 + r00)bi

]
, (2.3)

In this research paper, we consider that β is a Killing form of constant length

which is satisfies

rij = 0, bjbj;k = 0, (2.4)
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where “;” represents the covariant differentiation with respect to the Levi-Civita

connection of Rn.

The above equation implies that

sij = bi;j , sj = bisij = 0, bisij = bisri, ajr = −bisirajr = 0. (2.5)

The above relations implies that P = 0, equation (2.1) reduces to

Gi =α Gi +Qi, (2.6)

where

Qi = −1

2
Fsi0. (2.7)

From equations (1.1) and (2.1), we have obtained the Ricci curvature as:

Rik =α Rik +
{

2Qi;k − yj(Qi;j)yk − (Qi)yj (Qj)yk + 2Qj(Qi)yjyk
}

(2.8)

where

(Qi)yk =
∂Qi

∂yk

Since α;k = 0 and y;k = 0, we have

F;k =
( (α+ β)2

α

)
;k

= −2(α+ β)

α
s0k,

Fyk =
( (α+ β)2

α

)
yk

=
1

β

(
2yk −

(α+ β)2

α

)
bk.

Therefore from equation (2.7), we get

Qi;k = − (α+ β)

α
si0s0k −

(α+ β)2

2α
si0;k (2.9)

yj(Qi;j)yk = − (α+ β)

α
sk0s

i
0 −

(α+ β)

2α2

{
(1− β

α
)yk + 2αbk

}
si0;0

− (α+ β)2

2α
sik;0 (2.10)

(Qi)yj (Qj)yk = − (α+ β)3

4α3

{
(1− β

α
)yk + 2αbk

}
sijs

j
0

+
(α+ β)3

4α3
(1− β

α
)yjs

j
ks
i
0 +

(α+ β)4

4α2
sijs

j
k. (2.11)

Qj(Qi)yjyk =
(α+ β)3

4α2

{
(1 +

β

α
)yk − 2αbk

}
sijs

j
0 + (α+ β)si0sk0. (2.12)



Study of some curvatures with Z. Shen’s square metric 45

Substituting these values into equation (2.8), we obtain the following result

Rik =α Rik − 2
(α+ β)

α
si0s0k −

(α+ β)2

α
si0;k +

(α+ β)

α
sk0s

i
0

+
(α+ β)

2α2

{
(1− β

α
)yk + 2αbk

}
si0;0 −

(α+ β)2

2α
sik;0

+
(α+ β)3

4α3

{
(1− β

α
)yk + 2αbk

}
sijs

j
0 +

(α+ β)3

4α3
(1− β

α
)yjs

j
ks
i
0

+
(α+ β)4

4α2
sijs

j
k +

(α+ β)3

2α2

[{
(1 +

β

α
)yk − 2αbk

}
sijs

j
0

+2(α+ β)si0sk0

]
. (2.13)

After simplification, we find

Rik =α Rik − 2
(α+ β)

α
s0ks

i
0 −

(α+ β)2

α
si0;k +

(α+ β)

α
sk0s

i
0

+
(α+ β)

2α2
(1− β

α
)yks

i
0;0 −

(α+ β)

α
bks

i
0;0 −

(α+ β)2

2α
sik;0

+
(α+ β)

4α3
(1− β

α
)yjs

j
ks
i
0 +

(α+ β)4

4α2
sijs

j
k +

(α+ β)3

2α2
(1 +

β

α
)yks

i
js
j
0

− (α+ β)3

α
bks

i
js
j
0 + (α+ β)si0sk0. (2.14)

Since sk0 = −s0k, yjs
j
k = s0k, then the equation (2.14), can be written as

Rik =α Rik −
(α+ β)2

α
si0;k +

(α+ β)

2α2
(1− β

α
)yks

i
0;0

− (α+ β)

α
bks

i
0;0 −

(α+ β)2

2α
sik;0 +

(α+ β)4

4α2
sijs

j
k

+
(α+ β)4

2α3
yks

i
js
j
0 −

(α+ β)3

α
bks

i
js
j
0. (2.15)

Now, equation (2.15), can be written as

Rik =α Rik +
(α+ β)

2α

[
A+ Bα−2 + Cα−1

]
. (2.16)

where

A = −2(α+ β)si0;k − 2bks
i
0;0 − (α+ β)sik;0 − 2(α+ β)2bks

i
js
j
0,

B = (α− β)yks
i
0;0 + (α+ β)3yks

i
js
j
0,

C =
(α+ β)3

2
sijs

j
k.

Taking the trace of Rik, in equation (2.16) and using the relations yks
k
0;0 = 0,

and bks
k
0;0 = −sk0sk0 , we obtain

Ric =α Ric− (α+ β)2

α
si0;k +

(α+ β)4

4α2
sijs

j
k. (2.17)
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Zhang and Shen [7] recently established a relationship between the Ricci curva-

ture Ric of the Finsler metric F and the Ricci curvature αRic of the Riemannian

metric α. This relationship simplifies to equation (2.17) when β is a Killing

form of constant length. By the equation (2.17), we immediatly obtain the

relation

Ric = cF2 (2.18)

where

c =
1

4
sjks

k
j . (2.19)

if and only if

αRic =
(α+ β)2

α
si0;k. (2.20)

Equation (2.20) is linear in yi. Therefore, for n > 2, there does not exist a

scalar function λ such that sk0;k = λβ. As a result, equation (2.20) cannot be

expressed in the form αRic = λα2, since β is a Killing form of constant length.

This implies that α does not define an Einstein metric. Hence, we conclude the

following.

Theorem 2.1. A Z-Shen square metric F = (α+β)2

α , where β is a Killing

1-form of constant length on an n-dimensional manifold Mn (n > 2), is not

form an Einstein metric because the Riemannian metric α is not an Einstein

metric.

Let us consider a local orthonormal frame bi on Mn with respect to the

Riemannian metric α, and define ei = (y, bi)
n
i=1 as the corresponding local or-

thonormal frame on the pulled-back bundle π∗TMn, determined by bi. The

form of equation (2.15) remains valid for the components of the Riemann cur-

vature with respect to the frame {ei}ni=1. We then have

Qi = −1

2
Fsipyp = −1

2
Fbi:pyp (2.21)

Therefore equation (2.15) takes a form

Rik =α Ricik −Fbi;j;kyj +
(α+ β)

α

{
(
α− β
2α2

)yk − bk
}
bi;j;py

jyp − F
2
bi;k;jy

j

+
F2

4
bi;jbj;k +

F2

2α
ykbi;jbj;py

p −F(α+ β)bkbi;jbj;py
p.

(2.22)

Using the Bianchi identities, we get

bi;j;k − bi;k;j = bm
αRmijk, (2.23)

we have from [5]

bi;j;ky
j = bi;k;jy

j + bm
αRmijkyj
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and

bi;j;ky
jyk = −bj;i;kyjyk

= −(bj;k;i + bm
αRmijk)yjyk

= bm
αRmi .

Substituting these values into (2.22), we get

Rik =α Ricik −F(bi;k;j + bαmRmijk)yj − (α+ β)

α

{ (α− β)

2α2
yk − bk

}
bαmRmi

− F
2
bi;k;jy

j +
F2

2α
ykbi;jbj;py

p − F
2

4

{
bkbi;jbj;py

p − bi;jbj;k
}

(2.24)

Since α is Riemannian metric,

αRhihk = −αRhhik = − (n− 1)

2

α

Ryiyk .

Contracting equation (2.24) with respect to i and k and using (1.2), we obtain

an equation of Ricci curvature Ric of F as follows:

Ric =α Ric− (n− 1)

2β

(α+ β)2

α
bm

αRymyry
r +

(α+ β)2

2α2
bm

αRmi bi

− (α+ β)4

4α2
(bi;j)

2, (2.25)

where αRic is the Ricci curvature of α.

3. The S- curvature and projectively flat Z Shen square metric

In this section, we will focus on S curvature of Z Shen square metric F =
(α+β)2

α

Differentiating equtions (2.1), (2.2) and (2.3) with respect to yi, we obtain

Gmym =α Gmym + (Pym)ym +Qmym , (3.1)

(Pym)ym = (n+ 1)P, (3.2)

and

Qmym = [
(α+ β)

α
− 1

b2
]s0 −

1

b2
r0mb

m − 1

2
FSmm , (3.3)

where

Gmym =
∂Gm

∂ym
.

Using (3.1), (3.2) and (3.3) in (1.3), we get

S =α Gmym − (n+ 1)
−1

b2
(s0 + F−1r00) + (

(α+ β)2

α2
− 1

b2
)s0

−F
2
Smm −

1

b2
r0mb

m − ym(lnσF )xm ,

(3.4)
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where

(lnσF )xm =
∂(lnσF )

∂xm
.

We note that [1]

σF (x) = ρn+1σα(x), (3.5)

where ρ = ρ(x).

For a Riemannian metric α, we have

ym(lnσF )xm =α Gmym . (3.6)

Putting (3.5) and (3.6) in (3.4), we have

S = − 1

b2
[(n+ 2)s0 + (n+ 1)F−1r00 + r0mb

m] +
(α+ β)2

α2
s0

−F
2
Smm − (n+ 1)ρ−1ρxmym.

(3.7)

Suppose β is a Killing form that is rij = 0 and S = (n+ 1)cF , where

c = − 1

2(n+ 1)
Smm .

Then from (3.7), we have

− [(n+ 2)α− b2(α+ β)]s0 − (n+ 1)b2αρ−1ρxmym = 0. (3.8)

The above equation may be expressed as

(clmsn + dlymρxn)ylymyn = 0, (3.9)

where,

clm = ((n+ 2)al − b2alm) (3.10)

and

dlm = −(n+ 1)b2alρ
−1. (3.11)

Differentiating (3.9) successively witth respect to yi, yj and yk, we obtain

cijsk + dijρxk + (ijk) = 0, (3.12)

where +(ijk) denote the cyclic interchange of i, j,K and summation. Con-

versely, suppose (3.12) holds. Then multiplying (3.12) by yiyjyk, we obtain

(3.8). Putting (3.8) in (3.7), we get S = (n + 1)cF , where c = c(x), some

function of x that is F has isotropic S-currvature. thus we have

Theorem 3.1. The S-curvature of a Z-Shen square metric F = (α+β)2

α is given

by equation (3.7). If β is a Killing form, then the following two statements are

equivalent:

(1) The metric F has isotropic S-curvature.

(2) The condition cijsk + dijρxk = 0 holds, where the coefficients cij and dij
are defined in equations (3.10) and (3.11), respectively.
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4. Geometrical and Physical Significance of the Results

(i) The S-curvature is a measure of how the volume changes along geodesics

in Finsler geometry. For Z. Shen’s square metric, having isotropic S-curvature

implies uniform volumetric distortion, which can be interpreted as a general-

ized form of constant divergence in the manifold.

(ii) The condition that β is a Killing 1-form of constant length implies that

it preserves the metric (infinitesimal isometry) and has no variation in norm.

This restricts the geometry to be highly symmetric, akin to constant curvature

in Riemannian geometry.

(iii) In contexts like general relativity or optics, where Finsler geometry is

sometimes applied, isotropic S-curvature can be related to models with uni-

form entropy production or energy dispersion.

If β is a Killing form of constant length then from (3.7), it follows that

S = (n+ 1)cF , where c = c(x), some function of x.

Conversely, suppose F has isotropic S-curvature, then from (3.8), we have

[(n+ 2)α+ (α+ β)b2]s0 − (n+ 1)b2αρ−1ρxmym = b2α2s0. (4.1)

Comparing the coefficiants of α2 on both sides, we get s0 = 0. This implies

si = 0, i.e. β is of constant length. Thus we have

Theorem 4.1. The S-curvature of a Z-Shen square metric F = (α+β)2

α is

given by equation (3.7). If β is a Killing form, the following statements are

equivalent:

(1) β is of constant length.

(2) The metric F has isotropic S-curvature.

Combining above theorems we have

Theorem 4.2. The S-curvature of a Z-Shen square metric F = (α+β)2

α is

given by equation (3.7). If β is a Killing form, the following conditions are

equivalent:

(1) β is of constant length.

(2) The metric F has isotropic S-curvature.

(3) The relation cijsk + dijρxk = 0 holds, where cij and dij are defined in

equations (3.10) and (3.11), respectively.

Next, we consider projectively flat Z. shen square metric. Let the Z shen

square metric F = (α+β)2

α be projectively flat and β is a Killing form of constant

length. Then Gi = Pyi and rij = 0, si = 0. therefore (2.1) and (2.2) yields

Pyi =α Gi +Qi, (4.2)
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(n+ 1)Pyi =α Gmymyi +Qmymyi, (4.3)

From (3.144) and (3.15), we have

Qmymyi − (n+ 1)Qi =α Gmymyi −α Gi, (4.4)

Using (2.3) and (3.3) in (3.16), we have

(α+ β)2(Smmyi − (n+ 1)Si0) = 2α(αGi −α Gmymyi). (4.5)

Since (αGi −α Gmymyi) is quadratic in yi, both sides are identically zero. i.e. α

is projectivel flat and

Smmyi − (n+ 1)Si0 = 0. (4.6)

Differentiating equation (3.18) with respect to yi, we obtain Smm = 0. Sub-

stituting this result into (3.18), we get Si0 = 0. Therefore, β must be closed.

Conversely, suppose β is closed and α is projectively flat. Then, from equa-

tion (2.1), it follows that F is projectively flat. Thus, we conclude that

Theorem 4.3. A Z-Shen square metric F = (α+β)2

α , where β is a Killing

form of constant length, is projectively flat if and only if β is closed and α is

projectively flat.

From theorems (4.2) and (4.3), we have

Theorem 4.4. For a Z-Shen square metric F = (α+β)2

α , where β is a Killing

form, the following conditions are equivalent:

(1) The metric F has isotropic S-curvature.

(2) The metric F is projectively flat.

(3) The Riemannian metric α is projectively flat, and β is closed.

4.1. Geometrical and Physical significance of above theorems (3.2),

(3.3), (3.4) and (3.5). (i) Isotropic S-curvature implies uniformity of volume

change in geodesic flow, crucial in classifying Finsler spaces akin to constant

curvature in Riemannian geometry.

(ii) Killing forms represent symmetries or invariants; constant length further

constrains the geometry to highly symmetric structures.

(iii) Projective flatness implies that geodesics are straight lines in some coor-

dinate system; it reflects maximal simplicity of the geodesic structure.

(iv) In general relativity and spacetime geometry, Finsler structures extend

Riemannian models to account for direction-dependent behavior; isotropic S-

curvature relates to conserved or uniformly distributed physical quantities like

energy density.

(v) Killing forms of constant length relate to conserved momentum or angular
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momentum via Noether-type results.

(vi) Projective flatness can model scenarios where particles or light rays move

in free-fall along straight trajectories, akin to gravitational vacuum solutions.

If β is a Killing form, then from (3.7) and (1.4), we have

Eij =
1

2
+
F2

4
bi;jbj;k

[ 1

α
(Fyjsi + Fyisj) +

1

α2
(Fyjai −Fyiaj)s0 + Fyiyj

1

α
s0

+ F(2α−3aiajs0 −
1

α2
(aisj − ajsi))−

1

2
SmmFyiyj

]
.

(4.7)

From (3.19), it follows that Eij = (n+ 1)cF , where c = − 1
4(n+1) if and only if

1

α
(Fyjsi + Fyisj) +

1

α2
(Fyjai −Fyiaj)s0 + Fyiyj

1

α
s0 + F(2α−3aiajs0−

1

α2
(aisj − ajsi))−

1

2
SmmFyiyj .

(4.8)

But (3.20) holds if and only if s0 = 0. Thus we have

Theorem 4.5. A Z-Shen square metric F = (α+β)2

α , where β is a Killing form,

has isotropic E-curvature if and only if s0 = 0.

4.2. Geometrical and Physical significance of theorem (3.6). (i) The

condition s0 = 0 characterizes when the Z-Shen square metric F = (α+β)2

α pos-

sesses isotropic E-curvature, meaning the E-curvature is directionally invariant.

β being a Killing form implies that it generates infinitesimal isometries with

respect to the Riemannian metric α, and thus contributes symmetries to the

geometry.

(ii) This leads to strong constraints on the geometry, potentially simplifying

curvature computations and revealing deeper geometric structure. (iii) In phys-

ical theories, especially in Finslerian extensions of general relativity or modi-

fied gravity models, curvature quantities relate to the behavior of particles and

fields.

(iv) Isotropic E-curvature could be interpreted as a measure of uniformity in

the deviation of geodesics, akin to an isotropic force field.

(v) If s0 = 0, this uniformity (isotropy) in curvature suggests physical laws

might be the same in all directions within that space, a desirable symmetry in

many physical models.
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