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Abstract. Deformation of every spray into a projective spray can be done

using a volume form on a manifold. The Riemann curvature of a projective

spray is called the projective Riemmann curvature. In this paper, we are go-

ing to present a global rigidity result for the projectively PR-flat sprays that

have vanishing Douglas curvature. Then we characterize projectively PR-flat

Randers metrics of Douglas curvature.
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1. Introduction

The S-curvature, an important non-Riemannian quantity, is derived as a free

index form by the geodesic fields [3][6]. Let G be a spray on an n-dimensional

manifold M . Z. Shen has introduced a projectively equivalent spray Ĝ with

respect to a fixed volume form dV on a manifold Mn, [9]:

Ĝ := G +
2S

n+ 1
Y,
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where S = S(G,dV ) is the S-curvature of (G, dV ) and Y = yi ∂
∂yi is the vertical

vector field on TMn. Thus, the curvatures of Ĝ are the projective invariants

of the spray G with respect to a fixed volume form dV .

The Riemann curvature of Ĝ is called projective Riemann curvature of

(G, dV ):

PRik(G,dV )
:= RikĜ ,

that can be expressed as follows:

PRik(G,dV )
= Rik +

1

n+ 1

[
− 2

∂S

∂xk
yi +

∂2S

∂xj∂yk
yiyj +

∂S

∂xj
yjδik

−2Gj
∂2S

∂yj∂yk
yi − 2Gj

∂S

∂yj
δik +

∂S

∂yj
∂Gj

∂yk
yi
]

+
1

(n+ 1)2

[
S2δik − S

∂S

∂yk
yi
]
.

Hence, the projective Riemann curvature of (G, dV ) is given by [8]

PRik(G,dV )
= Rik + Ξδik −

1

2
Ξ.ky

i +
3χk
n+ 1

yi, (1.1)

where Rik = RikG is the Riemann curvature of the spray G and

Ξ =
S|0

n+ 1
+

[
S

n+ 1

]2

,

where S|0 is the covariant derivative of S along the geodesic G. G is of projec-

tively PR-flat if there is a volume form dV on M such that

PRik(G,dV )
= 0.

Similarly, the Ricci curvature of Ĝ is called the projective Ricci-curvature

of (G, dV ):

PRic(G,dV ) := RicĜ,

that can be expressed by (1.1) as follows:

PRic(G,dV ) = Ric+ (n− 1)

{
S|0

n+ 1
+
[ S

n+ 1

]2}
. (1.2)

It can be easily checked that if G has the condition Ricci-flat and S = dh

for some scalar function h = h(x), then G is projectively Ricci-flat.

Recently, the experienced researcher pay their attention to projective Ricci-

curvature, [1], [2], [5], [10], [11].

This paper is designed to classify the Douglas type sprays of projectively PR-

flat (PRic-flat), and examples are obtained.
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We give the following theorem within the notion of spray framework, and

then we obtain a new formula for Douglas type projectively PR-flat (PRic flat)

sprays:

Theorem 1.1. Let G be a Douglas spray on Mn i.e., the spray coefficients Gi

are in the following form

Gi = Ĝi + P (x, y)yi, Ĝi =
1

2
Γijk(x)yjyk, (1.3)

where Γijk(x) are local functions on Mn and P (x, y) is a positively homogeneous

function of degree one. Then G is projectively PR-flat if and only if there is a

scalar function λ on Mn such that

PRik =
[
η

0̂|0 − (η0)2
]
δik −

[
η

0̂|k − η0ηk
]
yi, (1.4)

where PRik is the Riemann curvature of Ĝ, “ |̂ ” denotes the horizontal co-

variant derivative with respect to Ĝ, η0 := ηiy
i,

ηi := λi +
1

n+ 1
(πi − Γmmi),

ηi := ∂iη, λi := ∂iλ and πi := ∂i(lnσ).

It is known that a Finsler metric on an n-dimensional manifold M is a

function F : TM → [0,∞) with the following two properties:

(a) F (u, v) is C∞ on TM\{0};
(b) the restriction Fu := F|TuM is a Minkowski function on TuM for all

u ∈M .

(α, β)-metrics forms a large class of Finsler metrics. The following form is

used to define them

F = αφ(s), s =
β

α
,

where α := α(x, y) =
√
aij(x)yiyj is a Riemannian metric, β := β(y) = bi(x)yi

is a 1-form with ||β||α < b0 and φ(s) ∈ C∞ is a positive function on (−b0, b0).

It is proved that F = αφ(s) is a positive definite Finsler metric if and only if

[3]

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0.

When φ(s) = 1 + s, the Finsler metrics F = α+ β is called Randers metrics.

Now, we consider that the Randers metrics F = α + β is of Douglas type. In

that case, we give the following theorem:

Theorem 1.2. Let F = α+β be a Douglas type Randers metric on Mn. Then

F is a projectively PR-flat if and only if there is a scalar function g on M such

that

PRik =
[
g

0̂|0 − (g0)2
]
δik −

[
g

0̂|k − g0ηk
]
yi, (1.5)
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where g0 := gxiyi.

By the above discussion, we have the following result

Theorem 1.3. Let G be a Douglas spray on Mn i.e., the spray coefficients Gi

are in the following form

Gi = Ĝi + P (x, y)yi, Ĝi =
1

2
Γijk(x)yjyk, (1.6)

where Γijk(x) are local functions on Mn and P (x, y) is a positively homogeneous

function of degree one. Then G is projectively Ricci-flat if and only if there is

a scalar function λ on Mn such that

R̂ic = −(n− 1)
[
(η0)2 − η

0̂|0
]
, (1.7)

where R̂ic is the Ricci curvature of Ĝ, “ |̂ ” denotes the horizontal covariant

derivative with respect to Ĝ, η0 := ηiy
i,

ηi := λi +
1

n+ 1
(πi − Γmmi),

ηi := ∂iη, λi := ∂iλ and πi := ∂i(lnσ).

Example 1.4. Consider the metric F = α+ β, where

α =

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
, β =

〈x, y〉
1− |x|2

.

Such a metric is the famous Funk metric which is projectively flat on the unit

ball Bn(1) in Rn and the flag curvature K = −1/4 . Also, it is easy to see

sij = 0. Then F is a projectively Ricci-flat Douglas metric.

2. Preliminaries

Let M be a differential manifold. In a standard local coordinate system, a

spray is a vector field on TM which are expressed as follows

G = yi
∂

∂xi
−Gi ∂

∂yi
, (2.1)

where Gi = Gi(x, y) are local C∞ functions on TM \ {0} with Gi(x, λy) =

λ2Gi(x, y),∀λ > 0.

For a spray G, the Riemann curvature tensor Rik are defined as follows.

Rij = 2
∂Gi

∂xj
− ∂2Gi

∂xk∂yj
yk + 2Gk

∂2Gi

∂yk∂yj
− ∂Gi

∂yk
∂Gk

∂yj

and the trace of Rij is called the Ricci curvature, Ric = Rmm.

One of the most widely used non-Riemannian curvatures in spray geometry

is S-curvature, which is obtained by

S =
∂Gm

∂ym
− ym ∂

∂xm
[

lnσBH
]
, (2.2)
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where dVF = σF (x)dx1 ∧ · · · ∧ dxn is the Busemann-Hausdorff volume form.

The χ-curvature can be expressed in several forms. For an arbitrary volume

form dV ,

χk =
1

2

{
S.k|0 − S|k

}
. (2.3)

The Douglas curvature tensors [2] are defined as follows

D i
j kl =

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
. (2.4)

For a Finsler metric F on an n-dimensional manifold M , the induced spray

coefficients of F are obtained from the following equation

Gi :=
1

4
gil
{

[F 2]xkyly
k − [F 2]xl

}
,

where gij is the inverse of the fundamental tensor gij := [ 1
2F

2]yiyj .

The so-called (α, β)-metrics form an important class of Finsler metrics that

can be defined as F = αφ(s), s = β
α , α := α(x, y) =

√
aij(x)yiyj is a Riemann-

ian metric, β := β(y) = bi(x)yi is a 1-form and φ(s) ∈ C∞ is a positive func-

tion on some open interval. When φ(s) = 1 + s, the Finsler metrics F = α+ β

is called Randers metrics. If φ(s) = 1/s, the Finsler metric F = α2/β is called

a Kropina metric. The spray coefficients of (α, β)-metrics are given in [3]

Gi = αGi + αQsi0 + Θ(r00 − 2αQs0)
yi

α
+ Ψ(r00 − 2αQs0)bi,

where

Q =
φ

′

φ− sφ′ ,

Θ =
(φ− sφ′

)φ
′ − sφφ′′

2φ[φ− sφ′ + (b2 − s2)φ′′ ]
,

Ψ =
φ

′′

2
[
φ− sφ′ + (b2 − s2)φ′′

] .
H. Zhu and R. Li has proved the following useful lemma, [8]:

Lemma 2.1. Let G be a spray on Mn. The followings are equivalent:

(a) G is projectively PR-flat,

(b) For any volume form dV on Mn there is a scalar function λ on Mn

such that

PRik = τδik −
1

2
τ.ky

i, (2.5)

where “.” denotes the vertical derivatives with respect to y and

τ = λ0|0 − λ2
0 +

2

n+ 1
λ0S.
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(c) For any volume form dV on Mn there is a scalar function λ on Mn

such that

Ricik =
[
Ψ|0 −Ψ2

]
δik −

1

2

[
Ψ|0 −Ψ2

]
.k
yi − 3χk

n+ 1
yi, (2.6)

where “ | ” is the horizontal covariant derivative with respect to G,

λ0 := λxmym,

Ψ := λ0 −
S

n+ 1
,

and S = S(G,dV ).

It’s important to remind that, Z. Shen and L. Sun has proved the following

lemma, [7]:

Lemma 2.2. Let G be a spray on Mn. The followings are equivalent:

(a) G is projectively Ricci-flat,

(b) For any volume form dV on Mn there is a scalar function λ on Mn

such that

PRic(G,dV ) = (n− 1)

{
λ0|0 − λ2

0 +
2

n+ 1
λ0S

}
, (2.7)

(c) For any volume form dV on Mn there is a scalar function λ on Mn

such that

RicG = (n− 1)
{

Ξ|0 − Ξ2
}
, (2.8)

where “ | ” is the horizontal covariant derivative with respect to G, λ0 :=

λxmym,

Ξ := λ0 −
S

n+ 1

and S = S(G,dV ).

Moreover, the lemma mentioned below is also crucial for us in the proof

section.

Lemma 2.3. [7, 2] Let F = α+β be a Randers metric on Mn. F is projectively

Ricci-flat if and only if there is a scalar function µ on Mn such that

αRic = 2s0ms
m
0 + α2sijs

j
i − (n− 1)[(µ0)2 − µ0;0], (2.9)

sm0;m = −(n− 1)µxmsm0, (2.10)

where αRic denotes the Ricci curvature of α.
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3. Proof of Main Theorems

Proof of Theorem 1.1. Let G be a Douglas spray on an Mn. Then, the

spray coefficients Gi satisfies (1.3). Obviously,

G = yi
∂

∂xi
− 2Gi

∂

∂yi

and

Ĝ = yi
∂

∂xi
− 2Ĝi

∂

∂yi

are projectively equivalent. Consequently, the projective Riemann curvature

of (G, dV ) is given by [8]:

PRik = PR̂ik = R̂ik + Ξ̂δik −
1

2
Ξ̂.ky

i +
3χ̂k
n+ 1

yi, (3.1)

where

Ξ̂ :=
Ŝ|̂0

n+ 1
+
[ Ŝ

n+ 1

]2
, (3.2)

where Ŝ = Ŝ(Ĝ,dV ) is the S-curvature of (Ĝ, dV ), “ |̂ ” denotes the horizontal

covariant derivative with respect to Ĝ, and χ̂ = χ̂(Ĝ,dV ) is the χ-curvature of

(Ĝ, dV ). It is possible to acquire that

Ŝ =
∂Ĝm

∂ym
− ym ∂

∂xm
(lnσ)

= Γmm0 − π0, (3.3)

where

π0 = πmy
m, πm =

∂

∂xm
(lnσ).

It is simple to see that

Ŝ|̂0 = (Γmm0 − π0)̂|0. (3.4)

Substituting (3.3) and (3.4) into (3.2), we get

Ξ̂ :=
(Γmm0 − π0)̂|0

n+ 1
+
[Γmm0 − π0

n+ 1

]2
, (3.5)

From (3.5), we have

Ξ̂.k :=
2(Γmm0 − π0)̂|k

n+ 1
+ 2
[ (Γmm0 − π0)(Γmmk − πk)

(n+ 1)2

]
. (3.6)

By (2.3) and [8, Lemma 3.1.], we obtain

χ̂ = 0. (3.7)
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Plugging (3.5), (3.6), and (3.7) into (3.1), we get

PRik = R̂ik +

{
(Γmm0 − π0)̂|0

n+ 1
+
[Γmm0 − π0

n+ 1

]2}
δik −

1

2

{
2(Γmm0 − π0)̂|k

n+ 1

+2
[ (Γmm0 − π0)(Γmmk − πk)

(n+ 1)2

]}
yi. (3.8)

By (1.6), we have

S =
∂Gm

∂ym
− ym ∂

∂xm
(lnσ)

= Ŝ + (n+ 1)P. (3.9)

Besides by (1.6), we have

λ0|0 = λ
0̂|0 − 2[Pyi]λi

= λ
0̂|0 − 2Pλ0, (3.10)

where “ | ” denotes the horizontal covariant derivative with respect to G and

λ0 := λiy
i. By (3.9) and (3.10), we have

τ = λ
0̂|0 − 2Pλ0 − λ2

0 +
2

n+ 1
λ0

[
Ŝ + (n+ 1)P

]
= λ

0̂|0 − λ
2
0 +

2

n+ 1
λ0

[
Γmm0 − π0

]
. (3.11)

Differentiating (3.11) with respect to yk yields

τk = 2
{
λ

0̂|k − λ0λk +
1

n+ 1
[λk(Γmm0 − π0) + λ0(Γmmk − πk)]

}
. (3.12)

Substituting (3.8)-(3.12) into (2.5), we have

R̂ik +

{
(Γmm0 − π0)̂|0

n+ 1
+
[Γmm0 − π0

n+ 1

]2}
δik −

{
(Γmm0 − π0)̂|k

n+ 1

+
[ (Γmm0 − π0)(Γmmk − πk)

(n+ 1)2

]}
yi =

{
λ

0̂|0 − λ
2
0 +

2

n+ 1
λ0[Γmm0 − π0]

}
δik

−

{
λ

0̂|k − λ0λk +
1

n+ 1

[
λk(Γmm0 − π0) + λ0(Γmmk − πk)

]}
yi. (3.13)

Thus,

R̂ik = [η
0̂|0 − (η0)2]δik − [η

0̂|k − η0ηk]yi, (3.14)

where η0 := ηiy
i and ηi := λi + 1

n+1 (πi − Γmmi). The converse is obvious. �
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Proof of Theorem 1.2. Note that a Randers metric F = α+ β is a Douglas

metric if and only if β is closed, i.e.

sij = 0. (3.15)

Together with [8, Lemma 5.1.], we get

αPRik =
[
g

0̂|0 − (g0)2
]
δik −

[
g

0̂|k − g0ηk
]
yi, (3.16)

where g0 := gxiyi. The sufficiency is obvious. �

The proof of Theorem 1.3 is similar to Theorem 1.1, as stated below:

Proof of Theorem 1.3. Let G be a Douglas spray on an Mn. Then, the

spray coefficients Gi satisfies (1.6). Obviously,

G = yi
∂

∂xi
− 2Gi

∂

∂yi

and

Ĝ = yi
∂

∂xi
− 2Ĝi

∂

∂yi

are projectively equivalent. Consequently, the projective Ricci curvature of

(G, dV ) is given by [7]:

PRic(G,dV ) = PRic(Ĝ,dV ) = R̂ic+ (n− 1)

{
Ŝ|̂0

n+ 1
+ [

Ŝ

n+ 1
]2

}
, (3.17)

where Ŝ = Ŝ(Ĝ,dV ) is the S-curvature of (Ĝ, dV ) and “ |̂ ” denotes the horizontal

covariant derivative with respect to Ĝ. One can obtain that

Ŝ =
∂Ĝm

∂ym
− ym ∂

∂xm
(lnσ)

= Γmm0 − π0, (3.18)

where

π0 = πmy
m, πm =

∂

∂xm
(lnσ).

It is easy to see that

Ŝ|̂0 = (Γmm0 − π0)̂|0. (3.19)

Substituting (3.18) and (3.19) into (3.17), we get

PRic(G,dV ) = R̂ic+ (n− 1)
[ 1

n+ 1
(Γmm0 − π0)̂|0 +

1

(n+ 1)2
(Γmm0 − π0)2

]
.(3.20)

By (1.6), we have

S =
∂Gm

∂ym
− ym ∂

∂xm
(lnσ)

= Ŝ + (n+ 1)P. (3.21)
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Besides by (1.6), we have

λ0|0 = λ
0̂|0 − 2[Pyi]λi

= λ
0̂|0 − 2Pλ0, (3.22)

where “ | ” denotes the horizontal covariant derivative with respect to G and

λ0 := λiy
i. Substituting (3.20), (3.21) and (3.22) into (2.7), we have

R̂ic = −(n− 1)
{

(η0)2 − η
0̂|0
}
, (3.23)

where η0 := ηiy
i and

ηi := λi +
1

n+ 1
(πi − Γmmi).

The converse is obvious. �

For Randers metrics, we use the theorem 1.3. Consider the geodesic coeffi-

cients of G = GF of Randers metric, [4]:

Gi = Ĝi + Pyi, Ĝi = αGi + αsi0, (3.24)

where

P =
r00 − 2αs0

2F
.

Since sij = 0, (3.24) becomes

Gi = αGi + Pyi, (3.25)

where P =
r00

2F
. Hence, following the proof of Theorem 1.3, we obtain

αRic = −(n− 1)
[
(η0)2 − η

0̂|0
]
, (3.26)

where η0 := ηiy
i and

ηi = λi +
1

n+ 1
(πi − Γmmi)

= λi − ϑi, (3.27)

Here,

ϑi =
1

n+ 1

∂

∂xi

(
ln
σα
σ

)
.

This completes the proof. �
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