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Abstract. The (n+ 1)-dimensional almost metric contact submanifolds wuth

maximal CR− submanifolds of (n− 1) in the Kenmotsu space forms classified

such that n > 5 and h(FX, Y )− h(X,FY ) = g(FX, Y )ζ for vector fields X,Y

tangent to M , where h and F denote the second fundamental form and a skew-

symmetric endomorphism acting on the tangent space of M , respectively, and

ζ a non zero normal vector field to M .
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1. Introduction

Let M be a connected (n + 1)−dimensional submanifold of codimension

q + 1 of a Kenmotsu space form (M,ϕ, ξ, η, g), where n > 5. Then it is known
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that if the maximal ϕ-invariant subspace of each tangent space is (n − 1)-

dimensional, M admits a naturally induced metric structure [4], [5]. For the

hypersurface case, the maximal ϕ-invariant subspace is necessarily (n − 1)-

dimensional and when the ambient space M is a Kenmotsu space form, it is the

maximal holomorphic subspace. On the other hand, for arbitrary codimension

q + 1, less detailed results are known, but more may be expected.

Kim et al. studied in [10] the maximal dimensional contact CR-submanifolds

in unit sphere which satisfy the condition

h(FX, Y ) + h(X,FY ) = 0.

They determined such submanifolds under the additional condition, where F

denotes a skew-symmetric endomorphism induced from ϕ acting on the tangent

bundle TM and h the second fundamental form on M . Also, Okumura et al.

studied in [4] the maximal dimensional contact CR-submanifolds in complex

space form with the same condition. Recently, in [9] Kim et al. and the author

in [6] introduced the same submanifolds in Sasakian space form and Kenmotsu

space form, respectively.

Afterward Kim et al. studied in [11] the maximal dimensional contact CR-

submanifold in unit sphere which satisfy the condition

h(FX, Y )− h(X,FY ) = g(FX, Y )ζ

for a normal non-zero vector field ζ to M . Also Okumura et al. in [5] and the

author et al. in [7] studied the maximal dimensional contact CR-submanifold

in complex space forms and Sasakian space forms with the same condition,

respectively.

In this paper, we study (n + 1)−dimensional contact CR-submanifolds of

(n − 1) contact CR-dimension in a Kenmotsu space form and determine such

submanifolds in a complete simply connected Kenmotsu space form of constant

ϕ-holomorphic sectional curvature c, under the assumption

h(FX, Y )− h(X,FY ) = g(FX, Y )ζ

for a normal non-zero vector field ζ to M . As our main results, we obtain:

Theorem. Let M be a CR−submanifold of (n− 1) contact CR-dimension

in the Kenmotsu space form M
2n+1

(c). If, for any vector fields X,Y tangent

to M , the above condition holds on M , then

•: for c ̸= −1, M
2n+1

(c) does not admit any CR−submanifolds of (n−1)

contact CR− dimension.

•: for c = −1, either M is a totally geodesic submanifold either or M is

locally isometric to a product of C ×Mλ, which C is a geodesic curve

and Mλ is submanifold of M or M is locally isometric to a product

M1 ×M2, where M1 and M2 are F -anti-invariant submanifolds in M .
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All manifolds, submanifolds and geometric objects will be assumed to be

connected, differentiable and of class C∞, and all maps also be of class C∞ if

not stated otherwise.

2. Preliminaries

A differentiable manifold M
2n+1

is said to have an almost contact structure

if it admits a (non-vanishing) vector field ξ, a one-form η and a (1, 1)−tensor

field ϕ satisfying

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ,

where I denotes the field of identity transformations of the tangent spaces at

all points. These conditions imply that ϕξ = 0 and η ◦ ϕ = 0, and that the

endomorphism ϕ has rank 2n at every point in M
2n+1

. A manifold M
2n+1

,

equipped with an almost contact structure (ϕ, ξ, η), is called an almost contact

manifold.

Suppose that M
2n+1

is a manifold carrying an almost contact structure. A

Riemannian metric g on M
2n+1

satisfying

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for all vector fields X and Y , is called compatible with the almost contact

structure. It is known that an almost contact manifold always admits at least

one compatible metric. Note that

η(X) = g(X, ξ),

for all vector fields X tangent to M
2n+1

, which means that η is the metric dual

of the characteristic vector field ξ.

A manifold M
2n+1

is said to be a contact manifold if it carries a global

one-form η such that

η ∧ (dη)n ̸= 0,

everywhere on M . The one-form η is called the contact form.

A submanifold M of a Riemannian contact manifold M
2n+1

tangent to ξ is

called an invariant (resp. anti-invariant) submanifold if ϕ(TpM) ⊂ TpM, for

each p ∈ M (resp. ϕ(TpM) ⊂ T⊥
p M, for each p ∈ M).

A submanifold M tangent to ξ of a contact manifold M
2n+1

is called a

contact CR-submanifold if there exists a pair of orthogonal differentiable dis-

tributions D and D⊥ on M such that:

(1) TM = D ⊕ D⊥ ⊕ Rξ, where Rξ is the 1−dimensional distribution

spanned by ξ;

(2) D is invariant by ϕ, i.e., ϕ(Dp) ⊂ Dp, for each p ∈ M ;

(3) D⊥ is anti-invariant by ϕ, i.e., ϕ(D⊥
p ) ⊂ T⊥

p M, for each p ∈ M .
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Let (M,ϕ, ξ, η, g) be a (2n+ 1)-dimensional contact manifold such that

∇Xξ = X − η(X)ξ, (∇Xϕ)Y = g(X,ϕY )ξ − η(Y )ϕX,

where ∇ is the Levi-Chivita connection of M , then M is called a Kenmotsu

manifold. The plane section π of TM is called a ϕ−section if ϕπx ⊆ πx, for

each x ∈ M . Also M is called of constant ϕ−sectional curvature if the sectional

curvature of ϕ−sections is constant. A Kenmotsu space form is a Kenmotsu

manifold of constant ϕ−sectional curvature. In this case the Riemannian cur-

vature tensor field R is given by

R(X,Y )Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }

−c− 1

4
{η(Z)[η(Y )X − η(X)Y ] + [g(Y, Z)η(X)− g(X,Z)η(Y )]ξ

−g(ϕY,Z)ϕX + g(ϕX,Z)ϕY + 2g(ϕX, Y )ϕZ},

for each X,Y, Z ∈ χ(M).

Let M be an (n + 1)−dimensional submanifold tangent to the structure

vector field ξ of M . If the ϕ-invariant subspace Dx has constant dimension for

any x ∈ M , then M is called a contact CR−submanifold and the constant is

called contact CR−dimension of M (cf. [1, 4, 5, 6, 7, 9, 10, 11]).

3. CR maximal dimensional submanifold structure

Let (M(c), g) be an (n+p)−dimensional Kenmotsu space form with contact

structure (ϕ, ξ, η) and let M be an n−dimensional submanifold tangent to the

structure vector field ξ of M(c) with the immersion ι of M into M(c). Then the

tangent bundle TM is identified with a subbundle of TM and a Riemannian

metric g of M is induced from the Riemannian metric g in such a way that

g(X,Y ) = g(ιX, ιY ), where X,Y in TM , while we denote the differential

of the immersion also by ι. The normal bundle T⊥M is the subbundle of

TM consisting of all X of TM which are orthogonal to TM with respect to

Riemannian metric g.

Now, let M be a CR submanifold of maximal CR dimension, that is, at

each point x of M , if we denote by Dx the ϕ-invariant subspace of the tangent

space TxM , then ξ cannot be contained in Dx at any point x ∈ M , thus the

assumption dimD⊥
x = 2 being constant and equal to 2 at each point x ∈

M yields that M can be dealt with as a contact CR-submanifold, where D⊥
x

denotes the complementary orthogonal subspace to Dx in TxM . Further, the

tangent space TxM satisfies dim(TxM ∩ ϕTxM) = n− 2.

Moreover, then it follows that M is even-dimensional and that there exists

a unit vector field N normal to M such that

ϕTM ⊂ TM ⊕ span{N}.
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In [6], the author showed the following equalises

g(U,X) = u(X), (3.1)

F 2X = −X + η(X)ξ + u(X)U, (3.2)

u(FX) = η(FX) = 0, FU = Fξ = 0, PN = 0, (3.3)

u(ξ) = η(U) = 0, Ui = 0 i = 1, . . . , p− 1. (3.4)

Further, let us denote by ∇ and ∇ the Levi-Civita connection on M(c) and M ,

respectively, and by ∇⊥ the normal connection induced from ∇ in the normal

bundle TM⊥ of M . Then Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X,Y ), (3.5)

∇XN = −AX +∇⊥
XN = −AX +

q∑
a=1

{sa(X)Na + sa∗(X)Na∗}, (3.6)

∇XNa = −AaX − sa(X)N +

q∑
b=1

{sab(X)Nb + sab∗(X)Nb∗}, (3.7)

∇XNa∗ = −Aa∗X − sa∗(X)N +

q∑
b=1

{sa∗b(X)Nb + sa∗b∗(X)Nb∗},(3.8)

h(X,Y ) = g(AX,Y )N +

q∑
a=1

{g(AaX,Y )Na + g(Aa∗X,Y )Na∗}. (3.9)

for any tangent vector fields X,Y to M . Also we have

AaX = −FAa∗X + sa∗(X)U, trAa∗ = −sa(U), (3.10)

Aa∗X = FAaX − sa(X)U, trAa = −sa∗(U), (3.11)

sa(X) = −u(Aa∗X), sa∗b∗(X) = sab(X), (3.12)

sa∗(X) = u(AaX), sa∗b(X) = −sab∗(X), (3.13)

g((FAa +AaF )X,Y ) = sa(X)u(Y )− sa(Y )u(X), (3.14)

g((FAa∗ +Aa∗F )X,Y ) = sa∗(X)u(Y )− sa∗(Y )u(X). (3.15)

(∇Y F )X = g(FY,X)ξ − η(X)FY − g(AY,X)U + u(X)AY, (3.16)

g(FX,FY ) = g(X,Y )− η(X)η(Y )− u(X)u(Y ), (3.17)

∇XU = FAX − u(X)ξ, (3.18)

∇Xξ = X − η(X)ξ, (3.19)

Aξ = 0, Aaξ = 0, Aa∗ξ = 0, a = 1, . . . , q. (3.20)

If the ambient manifold M is a Kenmotsu space form M(c), i.e., a Kenmotsu

space form of constant ϕ-holomorphic sectional curvature c, then the curvature
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tensor R of M(c) has a special form and the Gauss equation becomes

R(X,Y )Z =
c− 3

4
{g(Y, Z)X − g(X,Z)Y }

+
c+ 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y,Z)η(X)ξ + g(FY,Z)FX − g(FX,Z)FY − 2g(FX, Y )FZ}
+g(AY,Z)AX + g(AX,Z)AY

+

q∑
a=1

{g(AaY, Z)AaX − g(AaX,Z)AaY }

+

q∑
a=1

{g(Aa∗Y, Z)Aa∗X − g(Aa∗X,Z)Aa∗Y }, (3.21)

for any vector fields X,Y, Z tangent to M , where R denotes the Riemannian

curvature tensor of M . In this case, we can see that the equations of Codazzi

and Ricci-Kühne imply

(∇XA)Y − (∇Y A)X =
c+ 1

4
{u(X)FY − u(Y )FX − 2g(FX, Y )U}

+

q∑
a=1

{sa(X)AaY − sa(Y )AaX + sa∗(X)Aa∗Y − sa∗(Y )Aa∗X}, (3.22)

(∇XAa)Y − (∇Y Aa)X = sa(Y )AX − sa(X)AY

+

q∑
b=1

{sab(X)AbY − sab(Y )AbX + sab∗(X)Ab∗Y − sab∗(Y )Ab∗X}, (3.23)

(∇XAa∗)Y − (∇Y Aa∗)X = sa∗(Y )AX − sa∗(X)AY

+

q∑
b=1

{sa∗b(X)AbY − sa∗b(Y )AbX + sa∗b∗(X)Ab∗Y − sa∗b∗(Y )Ab∗X}, (3.24)

g(R(X,Y )ξa, ξ) = g((AAa −AaA)X,Y ) + (∇Xsa)(Y )− (∇Y sa)(X)

+

q∑
b=1

{sab(Y )sb(X)− sab(X)sb(Y ) + sab∗(Y )sb∗(X)− sab∗(X)sb∗(Y )} (3.25)

for any vector fields X,Y tangent to M .

4. Proof of the Main Theorem

In this section we let M be an (n+1)-dimensional contact CR-submanifold

of (n − 1) contact CR-dimension immersed in a Kenmotsu space form M(c)

and let us use the same notation as stated in the previous section.

We assume that the equality

h(FX, Y )− h(X,FY ) = g(FX, Y )ζ (4.1)
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holds on M for a normal vector field ζ to M . We also use the orthonormal

basis (3.4) of normal vectors to M and set

ζ = ρN +

q∑
a=1

(ρaNa + ρa∗Na∗).

Then by means of (3.9) the condition (4.1) is equivalent to

(AF + FA)X = ρFX, (4.2)

(AaF + FAa)X = ρaFX, (Aa∗F + FAa∗)X = ρa∗FX (4.3)

for all a = 1, . . . , q. Moreover, the last two equations combined with (3.14) and

(3.15) yield

sa(X)u(Y )− sa(Y )u(X) = ρag(FX, Y ), (4.4)

sa∗(X)u(Y )− sa∗(Y )u(X) = ρa∗g(FX, Y ), (4.5)

from which, putting Y = U and Y = ξ into (4.4) and (4.5), respectively, and

using (3.1), we obtain

sa(X) = sa(U)u(X), sa∗(X) = sa∗(U)u(X), (4.6)

sa(ξ) = 0, sa∗(ξ) = 0, a = 1, . . . , q.

Substituting (4.6) into (4.5), we have

ρa = 0, ρa∗ = 0, a = 1, . . . , q

and consequently with the aid of (4.3) we obtain

FAa +AaF = 0, FAa∗ +Aa∗F = 0, a = 1, . . . , q. (4.7)

As a direct consequence of (4.2) and (4.7), it follows from (3.1), (3.2), (3.12),

(3.20) and (3.21) that

AU = λU, λ := u(AU) (4.8)

and, for a = 1, . . . , q,

AaU = u(AaU)U = sa∗(U)U, Aa∗U = u(Aa∗U)U = −sa(U)U. (4.9)

Inserting FX into (4.2) instead of X and using (3.2), (3.20) and (4.8), we

have

AX = {(λ− ρ)u(X) + η(X)}U + {u(X)− ρη(X)}ξ + FAFX + ρX. (4.10)

On the other hand, FDx = Dx at each point x ∈ M , and thus there exists a

local orthonormal basis {Ei, Ei∗ , U, ξ}i=1,...,l of tangent vectors to M such that

Ei∗ = FEi, i = 1, . . . , l :=
n− 1

2
. (4.11)
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Lemma 4.1. Let M be an (n + 1)−dimensional contact CR-submanifold of

(n − 1) contact CR-dimension immersed in a Kenmotsu space form M(c). If

the condition (4.1) is satisfied on M for a non-zero normal vector field ρ to M ,

then U is an eigenvector of the shape operator A with respect to distinguished

normal vector field ξ, at any point of M .

Using Gauss equation (3.21) and Ricci-Kuhne formula (3.25), we obtain

0 = g(R(X,Y )ξa, ξ) = g(AAaX,Y )− g(AaAX,Y )

+(∇Xsa)(Y )− (∇Y sa)(X)

+

q∑
b=1

{sb(Y )sba(X) + sb(Y )sb∗a(X)

−sb(X)sba(Y )− sb∗(X)sb∗a(Y )}. (4.12)

Lemma 4.2. Let M be an (n + 1)−dimensional contact CR-submanifold of

(n− 1) contact CR-dimension immersed in a Kenmotsu space form M(c). If,

for any vector fields X,Y tangent to M , the equality (4.1) holds on M for a

non-zero normal vector field ρ to M , then

sa = 0, sa∗ = 0, a = 1, . . . , q,

namely, the distinguished normal vector field N is parallel with respect to the

normal connection. Moreover,

Aa = 0, Aa∗ = 0, a = 1, . . . , q.

Proof. First, differentiating the relation (3.11) and using (3.16), (3.18), (4.8)

and (4.9), we obtain

g((∇XAa∗)Y, U) = −g(AaAX,Y ) + λsa∗(U)u(X)u(Y )− (∇Xsa)(Y ). (4.13)

Reversing X and Y and subtracting thus yields

g((∇XAa∗)Y − (∇Y Aa∗)X, , U) = g((AAa −AaA)X,Y )

−(∇Xsa)(Y ) + (∇Y sa)(X). (4.14)

Substituting (3.25) into (4.14) and using (4.8), we have

g((AAa −AaA)X,Y ) − (∇Xsa)(Y ) + (∇Y sa)(X) = (4.15)
q∑

b=1

{sa∗b(X)g(AbY, U)− sa∗b(Y )g(AbX,U)}

+

q∑
b=1

{sa∗b∗(X)g(Ab∗Y, U)− sa∗b∗(Y )g(Ab∗X,U)}

Now, using (3.11), (3.12), (3.13), relations (4.12) and (4.15) yield

g((AAa −AaA)X,Y ) = 0, (4.16)
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for all X,Y ∈ T (M). On the other hand, differentiating (4.9) and using (3.18)

and (4.2), we obtain

g((∇XAa∗)Y − (∇Y Aa∗)X,U) + g((Aa∗FA+AFAa∗)X,Y )

= Y (sa(U))u(X)−X(sa(U))u(Y )− ρsa(U)g(FX, Y )

+sa(U)u(X)η(Y )− sa(U)u(Y )η(U). (4.17)

From (3.17) and using (3.11), (3.12), (3.20), (4.6) and (4.8), we compute

g((Aa∗FA+AFAa∗)X,Y ) = g((AaA−AAa)X,Y ). (4.18)

From (3.12), (3.13), Codazzi equation (3.24) and (4.8), yields

g((∇XAa∗)Y − (∇Y Aa∗)X,U) = λsa∗(Y )u(X)− λsa∗(X)u(Y ) (4.19)

+

q∑
b=1

{sa∗b(X)sb∗(Y )− sa∗b(Y )sb∗(X)}

+

q∑
b=1

{sa∗b∗(Y )sb(X)− sa∗b∗(X)sb(Y )}.

Therefore, using (4.17), (4.18) and (4.19), we get

Y (sa(U))u(X) − X(sa(U))u(Y )− ρsa(U)g(FX, Y )

+sa(U)u(X)η(Y )− sa(U)u(Y )η(U)

= g((AaA−AAa)X,Y ) + λsa∗(Y )u(X)− λsa∗(X)u(Y )

+

q∑
b=1

{sa∗b(X)sb∗(Y )− sa∗b(Y )sb∗(X)}

+

q∑
b=1

{sa∗b∗(Y )sb(X)− sa∗b∗(X)sb(Y )}. (4.20)

Putting Y = U into(4.20) and taking account of (4.6), it follows that

X(sa(U)) = U(sa(U))u(X)− sa(U)η(X)

−
q∑

b=1

{sa∗b(X)sb∗(U)− sa∗b∗(X)sb(U)

−sa∗b(U)sb∗(U)u(X) + sa∗b∗(U)sb(U)u(X)}. (4.21)

Also, with using (4.6) and (4.8), we conclude g((AaA−AAa)X,U) = 0. There-

fore, relation (4.20) with (4.21) and using (4.6), we have

g((AAa −AaA)X,Y ) = ρsa(U)g(FX, Y ). (4.22)

Thus (4.16) and (4.22) imply sa(U) = 0 and consequently, from (4.6) we con-

clude sa(X) = 0. In entirely the same way, we obtain sa∗ = 0, which completes

the proof. □
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Now from lemma 4.2, we would have

(∇XA)Y − (∇Y A)X =
c+ 1

4
{u(X)FY − u(Y )FX − 2g(FX, Y )U}. (4.23)

Since A is self adjoint, (3.20) and (4.8) show that D is an invariant subspaces

under A. Hence there exists a locally orthonormal frame

X1, . . . , X2n−2,

for D, where

AXi = αiXi, i = 1, . . . , 2n− 2.

Proposition 4.3. Let M be an (n+1)-dimensional contact CR−submanifold

of (n − 1) contact CR−dimension in the Kenmotsu space form M(c). If the

equality (4.1) holds on M for a non-zero normal vector field ρ to M , then for

eigenvalues of the shape operator A of M we have

X(λ) = X(αi) = 0, for all X ⊥ ξ,

ξ(λ) = −λ, ξ(αi) = −αi.

Proof. Differentiating (4.8) covariantly and using (3.18), (3.20), (4.2) and (4.8),

we have

g((∇XA)Y − (∇Y A)X,U) = −2g(AFAX,Y ) +X(λ)u(Y )− Y (λ)u(X)

+λρg(FX, Y )− λu(X)η(Y ) + λu(Y )η(X).

Moreover, using (3.3) and (4.23), we have

−c+ 1

2
g(FX, Y ) = −2g(AFAX,Y ) +X(λ)u(Y )− Y (λ)u(X)

+λρg(FX, Y )− λu(X)η(Y ) + λu(Y )η(X).(4.24)

Putting Y = U into the the last equation and using (3.3), we obtain

X(λ) = U(λ)u(X)− λη(X). (4.25)

Choosing X ∈ D in (4.25) we get

X(λ) = 0, (4.26)

and as well choosing X = ξ in (4.25) we have

ξ(λ) = −λ. (4.27)

Substituting (4.25) into (4.24), we obtain

−c+ 1

2
g(FX, Y ) = −2g(AFAX,Y ) + λρg(FX, Y )

Putting X = Xi into the the last equation and using (4.2), we have

α2
i − ραi +

λρ

2
+

c+ 1

4
= 0. (4.28)
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Differentiating (4.8) covariantly respect to U and using (3.18), (3.19), (4.8) and

(4.23), we have

U(λ) = 0.

Putting X = Xi and Y = ξ into the (4.23) and using (3.3), (3.19), (3.20) and

(4.26), we have

ξ(αi) = −αi.

Taking Y = U and X = Xi into the (4.23) and using (3.18) and (4.8), we

obtain

U(αi) = 0.

Putting X = Xi and Y = Xj into the (4.23), we obtain

X(αi) = 0,

which completes the proof. □

Proposition 4.4. Let M be an (n+1)-dimensional contact CR−submanifold

of (n−1) contact CR−dimension in Kenmotsu space form M(c). If the equality

(4.1) holds on M for a non-zero normal vector field ρ to M , then c = −1.

Proof. Putting X = FXi and Y = ξ in (4.23) and using proposition 4.3, (3.3),

(3.19), (4.2), it follows that

ξ(ρ) = −ρ. (4.29)

With differentiating of the equation (4.28) and relations proposition 4.3, (4.27)

and (4.29) we have

α2
i + αiλ+

λρ

2
= 0, (4.30)

therefore c = −1. □

Hence, we can state the following:

Theorem 4.5. A Kenmotsu space form with c ̸= −1 does not admit any CR-

submanifold of (n − 1) contact CR−dimension for which equality (4.1) holds

for a non-zero normal vector field ρ to M .

Proposition 4.6. Let M be an (n+1)-dimensional contact CR−submanifold

of (n− 1) contact CR−dimension in the Kenmotsu space form M(−1). If the

equality (4.1) holds on M for a non-zero normal vector field ρ to M , then for

eigenvalues of the shape operator A of M we have

X(ρ) = 0, for all X ⊥ ξ, ξ(ρ) = −ρ.
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Proof. Taking X = FXi and Y = U in (4.23) and using proposition 4.3, (3.3),

(3.19), (3.20), (4.2) and (4.8), follows that

U(ρ) = 0. (4.31)

Differentiating (4.2) covariantly and using (3.16), (3.20), (4.2) and (4.8), we

have

X(ρ)FY = (∇XA)FY + F (∇XA)Y + u(Y )A2X + (λ− ρ)u(Y )AX

+η(Y )FAX − {(λ− ρ)g(AX,Y )− g(AX,AY )}U
+{g(FX,AY )− ρg(FX, Y )}ξ

from which, using (3.3) and the orthonormal basis given by (4.11),

n+1∑
i=1

g((∇Ei
A)FY,Ei)−

l∑
i=1

g((∇Ei
A)FEi − (∇FEi

A)Ei, Y )

+(trA2 + (λ− ρ)trA− λ(λ− ρ)− λ2)u(Y ) = (FY )(ρ). (4.32)

On the other hand, using (3.3) and (3.19), we have

n+1∑
i=1

g((∇Ei
A)FY,Ei) =

n+1∑
i=1

g((∇FY A)Ei, Ei) = 0, (4.33)

and
l∑

i=1

g((∇EiA)FEi − (∇FEiA)Ei, Y ) = 0. (4.34)

Substituting (4.25) into (4.24) and use (4.2) implies

(
λρ

2
+

c+ 1

4
)FX + ρFAX − FA2X = 0.

Applying F to this equation and using (3.2), (3.3), (3.20), (4.2) and (4.8), we

can easily obtain

A2X = (λ2 − λ+
λρ

2
+

c+ 1

4
)u(X)U + (

λρ

2
+

c+ 1

4
)η(X)ξ

−(
λρ

2
+

c+ 1

4
)X − ρAX. (4.35)

Moreover, taking the trace of (4.35) with respect to the orthonormal bais (4.11)

and using (3.20), (4.8) and (4.10), we can find

trA = λ+
ρ(n− 1)

2
, (4.36)

trA2 =
(n− 1)ρ(λ− ρ)

2
− λ2 +

(n− 1)(c+ 1)

4
, (4.37)

Substituting (4.33),(4.34) and (4.36) into (4.32) and taking account of (3.20),

(4.8), (4.10), (4.35) and since c = −1, we can see that

(FX)(ρ) = 0.
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Thus we have for all X ∈ D

X(ρ) = 0. (4.38)

Hence (4.38) with (4.29) and (4.31) completes the proof. □

Lemma 4.7. Let M be an (n + 1)-dimensional contact CR−submanifold of

(n − 1) contact CR−dimension in the Kenmotsu space form M(c). If the

equality (4.1) holds on M for a non-zero normal vector field ρ to M , then

the shape operator A has one eigenvalues λ = 0 of multiplicities n + 1 or 2

eigenvalues 0, λ of multiplicities 1 and n, or 4 eigenvalues

0, λ,
ρ−

√
ρ2 − 2λρ

2
,

ρ+
√
ρ2 − 2λρ

2

of multiplicities 1, 1, n−1
2 and n−1

2 , respectively. Moreover, if A has exactly 2

eigenvalues 0, λ, then the eigenvalue α corresponding to an eigenvector of A,

orthogonal to U and ξ, satisfies α = λ = ρ/2 and vice-versa.

Proof. If λ = 0, the relation (4.30) implies that αi = 0. Otherwise, since

λ ̸= 0 from (4.30) the shape operator A has 2 eigenvalues 0, λ of multiplicities

1 and n, or 4 constant eigenvalues

0, λ,
ρ−

√
ρ2 − 2λρ

2
,

ρ+
√

ρ2 − 2λρ

2

whose multiplicities are 1, 1, n−1
2 and n−1

2 , respectively, with the help of

(3.20) and (4.8). Moreover, if A has exactly 2 eigenvalues 0 and λ, then

α = λ = ρ/2. □

Therefore we have one of the main result.

Theorem 4.8. Let M be a CR−submanifold of (n−1) contact CR-dimension

in the Kenmotsu space form M
2n+1

(−1). If, for any vector fields X,Y tangent

to M , the equality (4.1) holds on M for a non-zero normal vector field ρ to M

and the shape operator A of M has exactly one eigenvalue, then M is totally

geodesic submanifold.

Let’s assume now that A has exactly two distinct the eigenvalues. From

lemma 4.7, we put

Tλ = {X ∈ TM |AX = λX} = D ⊕ RU.

Then, we get the distributions Tλ.

Lemma 4.9. The distributions Tλ is involutive.

Proof. Let us choose X,Y ∈ Tλ and using (3.19), we have

g(∇XY, ξ) = −g(X,Y ),
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therefore

g([X,Y ], ξ) = 0. (4.39)

Now, for X,U ∈ Tλ and using (3.18), we have

g(∇XU, ξ) = −u(X).

Also, from the Codazzi equation, proposition 4.3, proposition4.6 and (4.23),

we get

g(∇UX, ξ) = −u(X),

therefore

g([X,U ], ξ) = 0. (4.40)

With selection X,Y ∈ D and using (4.23), (4.26) and the Codazzi equation, it

follows that

0 = (∇XA)Y − (∇Y A)X = λ∇XY −A∇XY − λ∇Y X +A∇Y X,

so

g([X,Y ], ξ) =
1

λ
g(A∇XY −A∇Y X, ξ) = 0. (4.41)

Relations (4.39), (4.40) and (4.41) imply that, for all X,Y ∈ Tλ, we have

g([X,Y ], ξ) = 0.

Hence, [X,Y ] ∈ Tλ. This shows that the distribution Tλ is involutive. □

Now we consider the integral submanifolds Mλ for the distributions Tλ in

M and we consider the integral curve of the vector field ξ and show it C(t). In

other words C ′(t) = ξ. Hence the following theorem holds:

Theorem 4.10. Let M be a CR−submanifold of (n−1) contact CR-dimension

in the Kenmotsu space form M
2n+1

(−1). If, for any vector fields X,Y tangent

to M , the equality (4.1) holds on M for a non-zero normal vector field ρ to M

and the shape operator A of M has exactly two eigenvalues, then M is locally

isometric to a product of C × Mλ, which C is a geodesic curve and Mλ is

submanifold of M .

Let’s assume now that A has exactly four distinct the eigenvalues

0, λ, α =
ρ−

√
ρ2 − 2λρ

2
, β =

ρ+
√

ρ2 − 2λρ

2
.

For eigenvalues of A, we put

T1 = D1 ⊕ Rξ = {X ∈ D|AX = αX} ⊕ Rξ,
T2 = D2 ⊕ RU = {X ∈ D|AX = βX} ⊕ RU.

Then, we get two distributions T1 and T2.
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Also, from lemma 4.7 we have α + β = ρ and for the vector field X on M ,

if we have AX = αX, from (4.2) we have AFX = βFX. So that D1 and D2

is F -anti-invariant subspace.

Lemma 4.11. The distributions T1 and T2 are both involutive.

Proof. By choosing X,Y ∈ T1 and U ∈ T2 . Then, using (3.18), we have

g(∇XY, U) = 0,

therefore

g([X,Y ], U) = 0. (4.42)

Now, for X, ξ ∈ T1 and Z ∈ T2. Then, using (3.19), we have

g(∇Xξ, Z) = 0.

Also, from the Codazzi equation, proposition 4.3, proposition 4.6 and (4.23),

we get

g(∇ξX,Z) = 0,

therefore

g([X, ξ], Z) = 0. (4.43)

With selection X,Y ∈ D1 and Z ∈ D2 and using (4.23), (4.26) and the Codazzi

equation, it follows that

0 = (∇XA)Y − (∇Y A)X = α∇XY −A∇XY − α∇Y X +A∇Y X,

so

g([X,Y ], Z) =
1

α
g(A∇XY −A∇Y X,Z) = 0. (4.44)

Relations (4.42), (4.43) and (4.44) imply that, for all X,Y ∈ T1 and Z ∈ T2,

we have

g([X,Y ], Z) = 0.

Hence, [X,Y ] ∈ T1. This shows that the distribution T1 is involutive. In

entirely the same way, we prove that T2 is involutive. □

Now we consider the integral submanifolds M1 and M2 respectively for the

distributions T1 and T2 in M . So that M1 and M2 is F -anti-invariant subman-

ifolds.

Thus we have one of the main result.

Theorem 4.12. Let M be a CR−submanifold of (n−1) contact CR-dimension

in the Kenmotsu space form M
2n+1

(−1). If, for any vector fields X,Y tangent

to M , the equality (4.1) holds on M for a non-zero normal vector field ρ to

M and the shape operator A of M has exactly four eigenvalues, then M is

locally isometric to a product M1×M2, where M1 and M2 are F−anti-invariant

submanifolds in M .
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