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Abstract. The (n + 1)-dimensional almost metric contact submanifolds wuth
maximal C R— submanifolds of (n — 1) in the Kenmotsu space forms classified
such that n > 5 and h(FX,Y) — h(X, FY) = g(FX,Y)( for vector fields X,Y
tangent to M, where h and F' denote the second fundamental form and a skew-
symmetric endomorphism acting on the tangent space of M, respectively, and
¢ a non zero normal vector field to M.
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1. Introduction

Let M be a connected (n + 1)—dimensional submanifold of codimension
g+ 1 of a Kenmotsu space form (M, ¢,&,1,g), where n > 5. Then it is known
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that if the maximal ¢-invariant subspace of each tangent space is (n — 1)-
dimensional, M admits a naturally induced metric structure [4], [5]. For the
hypersurface case, the maximal ¢-invariant subspace is necessarily (n — 1)-
dimensional and when the ambient space M is a Kenmotsu space form, it is the
maximal holomorphic subspace. On the other hand, for arbitrary codimension
q + 1, less detailed results are known, but more may be expected.

Kim et al. studied in [10] the maximal dimensional contact C'R-submanifolds
in unit sphere which satisfy the condition

WMFX,Y)+ h(X,FY) =0.

They determined such submanifolds under the additional condition, where F’
denotes a skew-symmetric endomorphism induced from ¢ acting on the tangent
bundle TM and h the second fundamental form on M. Also, Okumura et al.
studied in [41] the maximal dimensional contact C'R-submanifolds in complex
space form with the same condition. Recently, in [9] Kim et al. and the author
in [6] introduced the same submanifolds in Sasakian space form and Kenmotsu
space form, respectively.

Afterward Kim et al. studied in [11] the maximal dimensional contact C'R-
submanifold in unit sphere which satisfy the condition

WFX,Y) = h(X,FY) = g(FX,Y)(

for a normal non-zero vector field ¢ to M. Also Okumura et al. in [5] and the
author et al. in [7] studied the maximal dimensional contact C'R-submanifold
in complex space forms and Sasakian space forms with the same condition,
respectively.

In this paper, we study (n + 1)—dimensional contact CR-submanifolds of
(n — 1) contact CR-dimension in a Kenmotsu space form and determine such
submanifolds in a complete simply connected Kenmotsu space form of constant
¢-holomorphic sectional curvature ¢, under the assumption

WFX,Y) - h(X,FY)=g(FX,Y)(

for a normal non-zero vector field ¢ to M. As our main results, we obtain:

Theorem. Let M be a C'R—submanifold of (n — 1) contact C'R-dimension
in the Kenmotsu space form M%H(c). If, for any vector fields X,Y tangent

to M, the above condition holds on M, then

o: for c # —1, M%H(c) does not admit any C'R—submanifolds of (n—1)

contact C R— dimension.

o: for ¢ = —1, either M is a totally geodesic submanifold either or M is
locally isometric to a product of C' x My, which C' is a geodesic curve
and M) is submanifold of M or M is locally isometric to a product
My x My, where M7 and M, are F-anti-invariant submanifolds in M.
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All manifolds, submanifolds and geometric objects will be assumed to be
connected, differentiable and of class C'*°, and all maps also be of class C'* if
not stated otherwise.

2. Preliminaries

. . . -2 . .
A differentiable manifold M i is said to have an almost contact structure
if it admits a (non-vanishing) vector field £, a one-form 1 and a (1,1)—tensor
field ¢ satisfying

n(é-)zla ¢2:_I+77®§7

where I denotes the field of identity transformations of the tangent spaces at
all points. These conditions imply that ¢£ = 0 and n o ¢ = 0, and that the
endomorphism ¢ has rank 2n at every point in M A manifold M%H,
equipped with an almost contact structure (¢, &, n), is called an almost contact
manifold.

Suppose that M s a manifold carrying an almost contact structure. A

. . A “72n+1 . .
Riemannian metric g on M satisfying

for all vector fields X and Y, is called compatible with the almost contact
structure. It is known that an almost contact manifold always admits at least
one compatible metric. Note that

n(X) =9(X,¢),

for all vector fields X tangent to M%H, which means that 7 is the metric dual
of the characteristic vector field &.

A manifold """ is said to be a contact manifold if it carries a global
one-form 7 such that

n A (dn)" # 0,

everywhere on M. The one-form 7 is called the contact form.

A submanifold M of a Riemannian contact manifold M- tangent to £ is
called an invariant (resp. anti-invariant) submanifold if ¢(T,M) C T,M, for
each p € M (resp. ¢(T,M) C T;-M, for each p € M).

A submanifold M tangent to £ of a contact manifold M s called a
contact CR-submanifold if there exists a pair of orthogonal differentiable dis-
tributions D and D+ on M such that:

(1) TM = D @& D+ @ R¢, where R¢ is the 1—dimensional distribution
spanned by &;

(2) D is invariant by ¢, i.e., ¢(D,) C D,, for each p € M;

(3) D* is anti-invariant by ¢, i.e., d)(DIJ;) C TPJ-M, for each p € M.
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Let (M, $,¢,1,9) be a (2n + 1)-dimensional contact manifold such that

Vxé=X-n(X)§,  (Vx¢)Y =g(X, oY) —n(Y)eX,

where V is the Levi-Chivita connection of M, then M is called a Kenmotsu
manifold. The plane section 7 of TM is called a ¢—section if ¢m, C 7, for
each x € M. Also M is called of constant ¢—sectional curvature if the sectional
curvature of ¢—sections is constant. A Kenmotsu space form is a Kenmotsu
manifold of constant ¢—sectional curvature. In this case the Riemannian cur-
vature tensor field R is given by

Rx.V)Z = 220X —g(x, 2)v)
c—1

{n(2)In(Y)X = n(X)Y]+ [g(Y, Z)n(X) = g(X, Z)n(Y)]¢
—9(oY, 2)¢X +7(¢X, Z)pY + 29(¢X,Y)p 2},

for each XY, Z € x(M).

Let M be an (n + 1)—dimensional submanifold tangent to the structure
vector field & of M. If the ¢-invariant subspace D, has constant dimension for
any © € M, then M is called a contact C R—submanifold and the constant is
called contact C R—dimension of M (cf. [1, 4, 5, 6, 7, 9, 10, 11]).

3. CR maximal dimensional submanifold structure

Let (M(c),q) be an (n+p)—dimensional Kenmotsu space form with contact
structure (¢,&,n) and let M be an n—dimensional submanifold tangent to the
structure vector field ¢ of M (c) with the immersion ¢ of M into M (c). Then the
tangent bundle TM is identified with a subbundle of TM and a Riemannian
metric g of M is induced from the Riemannian metric g in such a way that
g(X,Y) = g(tX,.Y), where X,Y in TM, while we denote the differential
of the immersion also by ¢. The normal bundle T+M is the subbundle of
TM consisting of all X of TM which are orthogonal to TM with respect to
Riemannian metric g.

Now, let M be a CR submanifold of maximal CR dimension, that is, at
each point = of M, if we denote by D, the ¢-invariant subspace of the tangent
space T, M, then £ cannot be contained in D, at any point x € M, thus the
assumption dim D} = 2 being constant and equal to 2 at each point x €
M yields that M can be dealt with as a contact CR-submanifold, where D+
denotes the complementary orthogonal subspace to D, in T, M. Further, the
tangent space T, M satisfies dim(T, M N ¢T, M) =n — 2.

Moreover, then it follows that M is even-dimensional and that there exists
a unit vector field N normal to M such that

¢TM C TM & span{N}.
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In [6], the author showed the following equalises
9(U, X) = u(X), (3.1)
F?X = =X +n(X)€ +u(X)U, (3.2)
u(FX)=nFX)=0, FU=F{=0, PN=0, (3.3)
u(l)=nU)=0, U;=0 i=1,...,p— 1 (3.4)

Further, let us denote by V and V the Levi-Civita connection on M (c) and M,
respectively, and by V+ the normal connection induced from V in the normal
bundle TM* of M. Then Gauss and Weingarten formulae are given by

VxY = VxY + h(X)Y), (3.5)

q
VXN =—AX + VxN = —AX + > {54(X)Nq + 54+ (X)Ng+}, (3.6)

a=1

q
VxNa=—A.X = so(X)N + > {3a(X)Ny + sap (X)Np=}, (3.7
b=1
o q
VixNaw = —Aa*X = 50+ (X)N + Y {8a6(X)Np + 5+ (X)Np+ }(3.8)
b=1

h(X,Y)=g(AX,Y)N + Zq:{g(AaX, V)N, + g(Ag- X, Y)N,-}. (3.9)

a=1

for any tangent vector fields X,Y to M. Also we have

A X = —FAup X + 5.-(X)U, trAy, = —s4,(U), ( )
A X = FA,X — 5,(X)U, trA, = —sq(U), (3.11)
$a(X) = —u(Ap=X),  Sgrp-(X) = sap(X), (3.12)
Sar(X) = u(AeX),  Sap(X) = —5ap (X), ( )
9J(FAa+ AuF)X,Y) = so(X)u(Y) — sq(Y)u(X), (3.14)
G(FAg + A F)X,Y) = 80« (X)u(Y) — s (Y)u(X). (3.15)
(VyF)X = g(FY, X)§ = n(X)FY — g(AY, X)U + u(X)AY, (3.16)
g(FX, FY) = g(X,Y) = n(X)n(Y) — u(X)u(Y), (3.17)
VxU =FAX —u(X)§, (3.18)
Vx{=X-n(X)§, (3.19)
A =0, A, £=0, A, £=0, a=1,...,q. (3.20)

If the ambient manifold M is a Kenmotsu space form M(c), i.e., a Kenmotsu
space form of constant ¢-holomorphic sectional curvature ¢, then the curvature
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tensor R of M (c) has a special form and the Gauss equation becomes

RXYZ = 2o 2)X — g(X, 2))

c+1

Xn(2)Y —n(Y)n(Z)X + g(X, Z)n(Y )¢
—9(Y, Zn(X)§ + g(FY, Z)FX — g(FX,Z)FY — 29(FX,Y)FZ}
+9(AY, 2)AX + g(AX, Z)AY

+ zq:{g(AaY, Z)AlX — g(AuX, Z)AY'}

a=1

q
+ 3 {9(AeY, Z)Age X — g(Aq- X, Z)Ag-Y'}, (3.21)
a=1
for any vector fields X,Y, Z tangent to M, where R denotes the Riemannian
curvature tensor of M. In this case, we can see that the equations of Codazzi
and Ricci-Kiihne imply

(VxA)Y — (VyA)X = “4' LX) FY — w(Y)FX — 29(FX,Y)U}

+ zq:{sa(X)AaY —5a(Y)AuX + 80+ (X)AgrY — 50+ (V) A X}, (3.22)

(VxAa)Y — (VyAg)X = $4(Y)AX — s,(X)AY

q
+ > {5ab(X)ApY = 50 (Y)ApX + Sape (X) Ap Y — sap- (V) Ap- X}, (3.23)
b=1

(VxAg)Y — (Vy Ag )X = 50+ (Y)AX — 54+ (X)AY

q
+ Z{Sa*b(X)AbY - Sa*b(Y)AbX + Sa*p> (X)Ab*y — Sa*b* (Y)Ab*X}7 (324)
b=1

E(R(Xv Y)gaa 5) = g((AAa - AaA)X7 Y) + (VXS(L)(Y) - (VYSa)(X)
+ Z{Sab(y)sb(X) — Sab(X)Sb(Y) + Sab* (Y)Sb* (X) — Sab* (X)Sb* (Y)} (325)
b=1
for any vector fields X,Y tangent to M.

4. Proof of the Main Theorem

In this section we let M be an (n + 1)-dimensional contact C'R-submanifold
of (n — 1) contact C R-dimension immersed in a Kenmotsu space form M(c)
and let us use the same notation as stated in the previous section.

We assume that the equality

WFX,Y) - h(X,FY) = g(FX,Y)( (4.1)
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holds on M for a normal vector field ¢ to M. We also use the orthonormal
basis (3.4) of normal vectors to M and set

q
¢=pN+ Z(paNa + paxNa).

a=1

Then by means of (3.9) the condition (4.1) is equivalent to

(AF + FA)X = pFX, (4.2)

(AuF + FA)X = paFX, (Au-F + FA)X = pa-FX (4.3)

foralla =1,...,q. Moreover, the last two equations combined with (3.14) and
(3.15) yield

5 (X)u(Y) — sa(Y)u(X) = pag(FX,Y), (4.4

Sax (X)u(Y) — s+ (YV)u(X) = pa-g(FX,Y), (4.5)

from which, putting ¥ = U and Y = £ into (4.4) and (4.5), respectively, and
using (3.1), we obtain

$0(X) = 5a(U)u(X),  $0-(X) = 500 (U)u(X), (4.6)
$4(§) =0, $4+(§)=0, a=1,...,q
Substituting (4.6) into (4.5), we have
Pa=0, po~=0, a=1,...,q
and consequently with the aid of (4.3) we obtain
FAy+ A F =0, FAp +Ap-F=0, a=1,...,q. (4.7)

As a direct consequence of (4.2) and (4.7), it follows from (3.1), (3.2), (3.12),
(3.20) and (3.21) that

AU = XU, X:=u(AU) (4.8)
and, fora=1,...,q,
AU =u(AU)U = 50« (U)U, ApU = u(Ap-U)U = —5,(U)U. (4.9)

Inserting F'X into (4.2) instead of X and using (3.2), (3.20) and (4.8), we
have

AX = {(\ = p)u(X) + (X))} + {u(X) — pn(X)}¢ + FAFX + pX. (4.10)

On the other hand, F'D, = D, at each point x € M, and thus there exists a
local orthonormal basis {F;, E;«, U, &}i—1 ... of tangent vectors to M such that

.....

1
B = FE, i:l,...,l::nQ . (4.11)
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Lemma 4.1. Let M be an (n + 1)—dimensional contact CR-submanifold of
(n — 1) contact CR-dimension immersed in a Kenmotsu space form M(c). If
the condition (4.1) is satisfied on M for a non-zero normal vector field p to M,
then U is an eigenvector of the shape operator A with respect to distinguished
normal vector field &, at any point of M.
Using Gauss equation (3.21) and Ricci-Kuhne formula (3.25), we obtain
0=7g(R(X,Y)&. &) = g(A4.X,Y)~g(A.AX,Y)
+(VXsa)(Y) — (Vysa)(X)

+ > {56(Y)50a(X) + 55(Y) $pea(X)
b=1
oo (X850 (V) — 840 (X)spwa (V). (4.12)

Lemma 4.2. Let M be an (n + 1)—dimensional contact CR-submanifold of
(n — 1) contact CR-dimension immersed in a Kenmotsu space form M(c). If,
for any vector fields X,Y tangent to M, the equality (4.1) holds on M for a
non-zero normal vector field p to M, then

Sq =0, s¢=0, a=1,...,q,

namely, the distinguished normal vector field N is parallel with respect to the
normal connection. Moreover,

A, =0, Ap=0, a=1,...,q

Proof. First, differentiating the relation (3.11) and using (3.16), (3.18), (4.8)
and (4.9), we obtain

G((Vx A0 )Y,U) = —g(AaAX, Y) + Asar (U)u(X)u(Y) — (Vxsa) (V). (4.13)
Reversing X and Y and subtracting thus yields
9g(Vx A )Y — (Vy A, )X,,U) = g((AA, — A,A)X,Y)
—(Vxsa)(Y) + (Vysa)(X). (4.14)
Substituting (3.25) into (4.14) and using (4.8), we have
9((Ada — A A) X,Y) = (VXs0)(Y) + (Vysa)(X) = (4.15)

D {5a6(X)g(ApY, U) = s4-5(Y)g(As X, U)}
b=1

+ 3 {samp (X)g(Ap Y, U) = s (V) g(Ap- X, U)}
b=1

Now, using (3.11), (3.12), (3.13), relations (4.12) and (4.15) yield
g((AA, — A, A)X,Y) =0, (4.16)
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for all X, Y € T(M). On the other hand, differentiating (4.9) and using (3.18)
and (4.2), we obtain

9(VxAe)Y — (VyAe)X,U)+g((Ae-FA+ AFAL)X,Y)
= Y(sa(U))u(X) = X(sa(U))u(Y) = psa(U)g(FX,Y)
+5a(Du(X)n(Y) = so(U)u(Y)n(U). (4.17)

From (3.17) and using (3.11), (3.12), (3.20), (4.6) and (4.8), we compute
9((AgsFA+ AF A, )X)Y) = g((AgA — AA)X,Y). (4.18)

From (3.12), (3.13), Codazzi equation (3.24) and (4.8), yields

9(VxAg )Y — (VyAe )X, U) = Ase=(Y)u(X) — Asar (X)u(Y) (4.19)

+ D {50 (X)sp- (V) = sa+6(Y )50+ (X) }
b=1

+> {5ambe (V)55(X) = 500+ (X)55(Y) }-
b=1

Therefore, using (4.17), (4.18) and (4.19), we get

Y(sa(U)u(X) — X(sa(U))u(Y) = psa(U)g(FX,Y)
+5a(U)u(X)n(Y) = sa(U)u(Y)n(U)
= g((AgA —AA)X,Y) + Asg= (Y )u(X) — Ase» (X)u(Y)

+ D {50 (X)sp- (V) = sa6(Y )50+ (X) }
b=1

+ > {Sarbe (V)56(X) = saupe (X) (V) (4.20)
b=1

Putting Y = U into(4.20) and taking account of (4.6), it follows that
X(sa(U)) = Ulsa(U))u(X) = sa(U)n(X)

= {50 b (X)) (U) = 500+ (X)s5(U)
b=1

—8ab(U)spx (U)u(X) + sarp- (U)sp(U)u(X)}. (4.21)

Also, with using (4.6) and (4.8), we conclude g((A,A— AA,)X,U) = 0. There-
fore, relation (4.20) with (4.21) and using (4.6), we have

g((AAa - AaA)X7 Y)= psa(U)g(FXa Y) (422)

Thus (4.16) and (4.22) imply s,(U) = 0 and consequently, from (4.6) we con-
clude s,(X) = 0. In entirely the same way, we obtain s, = 0, which completes
the proof. O
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Now from lemma 4.2, we would have
c+1
4

Since A is self adjoint, (3.20) and (4.8) show that D is an invariant subspaces
under A. Hence there exists a locally orthonormal frame

(VxA)Y — (VyA)X =

{W(X)FY —u(Y)FX —29(FX,Y)U}. (4.23)

X17"'5X2n—27

for D, where
AXi:OéiXi, 221,,271—2

Proposition 4.3. Let M be an (n+ 1)-dimensional contact C R—submanifold
of (n — 1) contact CR—dimension in the Kenmotsu space form M(c). If the
equality (4.1) holds on M for a non-zero normal vector field p to M, then for
etgenvalues of the shape operator A of M we have

X(\)=X(ay) =0, forall X L&,
£(>‘) =-A E(az) = Q4.

Proof. Differentiating (4.8) covariantly and using (3.18), (3.20), (4.2) and (4.8),
we have

g(VxA)Y — (VyA)X,U) = —29(AFAX,Y)+ XMNu(Y)—Y(MNu(X)
FApg(FX,Y) = Ma(X)(Y) + Xu(Y)(X).
Moreover, using (3.3) and (4.23), we have

c+1
2

g(FX)Y) = —2¢9(AFAX,)Y)+XN)u(Y)—-Y(N)u(X)
+FApg(FX,)Y) = du(X)n(Y) + Au(Y)n(X). (4.24)
Putting Y = U into the the last equation and using (3.3), we obtain
XA) =UMN)u(X) — In(X). (4.25)
Choosing X € D in (4.25) we get

X(\) =0, (4.26)
and as well choosing X = ¢ in (4.25) we have

EN) = —A (4.27)
Substituting (4.25) into (4.24), we obtain

c+1

g(FX,Y)=—-29(AFAX,Y) + Apg(FX,Y)

Putting X = X; into the the last equation and using (4.2), we have

Ap c+1
2 _ . =
o — pag + 5 + 1

0. (4.28)



Special CR Maximal Dimensional Submanifolds in the Kenmotsu Space Forms 137

Differentiating (4.8) covariantly respect to U and using (3.18), (3.19), (4.8) and
(4.23), we have

U(\) = 0.

Putting X = X; and Y = ¢ into the (4.23) and using (3.3), (3.19), (3.20) and
(4.26), we have

£(ay) = —ay.

Taking Y = U and X = X, into the (4.23) and using (3.18) and (4.8), we
obtain

U(a;) = 0.
Putting X = X, and Y = X into the (4.23), we obtain
X(ay) =0,
which completes the proof. O

Proposition 4.4. Let M be an (n+ 1)-dimensional contact C R—submanifold
of (n—1) contact C R—dimension in Kenmotsu space form M (c). If the equality
(4.1) holds on M for a non-zero normal vector field p to M, then ¢ = —1.

Proof. Putting X = FX; and Y = £ in (4.23) and using proposition 4.3, (3.3),
(3.19), (4.2), it follows that

§(p) = —p. (4.29)
With differentiating of the equation (4.28) and relations proposition 4.3, (4.27)
and (4.29) we have

Y _
5 =
therefore ¢ = —1. O

o + )+ 0, (4.30)

Hence, we can state the following:

Theorem 4.5. A Kenmotsu space form with ¢ # —1 does not admit any CR-
submanifold of (n — 1) contact C R—dimension for which equality (4.1) holds
for a non-zero normal vector field p to M.

Proposition 4.6. Let M be an (n+ 1)-dimensional contact C R—submanifold
of (n — 1) contact CR—dimension in the Kenmotsu space form M(—1). If the
equality (4.1) holds on M for a non-zero normal vector field p to M, then for
eigenvalues of the shape operator A of M we have

X(p)=0, forall X L&, &(p) = —p.



138 Samaneh Norouzi and Mohammad Ilmakchi

Proof. Taking X = FX; and Y = U in (4.23) and using proposition 4.3, (3.3),
(3.19), (3.20), (4.2) and (4.8), follows that
U(p)=0. (4.31)
Differentiating (4.2) covariantly and using (3.16), (3.20), (4.2) and (4.8), we
have
X(p)FY = (VxA)FY + F(VxAY +u(Y)A?X + (A — p)u(Y)AX
+n(Y)FAX — {(A = p)g(AX,Y) — g(AX, AY)}U
Hy(FX, AY) — pg(FX, Y)}E
from which, using (3.3) and the orthonormal basis given by (4.11),

n+1
S (Ve AFY, E) — 3 (Ve A)FE, — (Vo A)E,Y)
i=1 i=1
+(trA?2 + (X = p)trA — X\ — p) = A)u(Y) = (FY)(p). (4.32)
On the other hand, using (3.3) and (3.19), we have

n+1 ntl
> 9(Ve AFY,E) =Y g(VryA)E;, E;) =0, (4.33)

=1

and
l
> 9((Ve,AFE; — (Vpg,A)E;,Y) = 0. (4.34)
i=1

Substituting (4.25) into (4.24) and use (4.2) implies

Ap  c+1
S+
Applying F' to this equation and using (3.2), (3.3), (3.20), (4.2) and (4.8), we

can easily obtain

JFX + pFAX — FA’X =0.

A +1 A 1
X = a2 e (224 S e
1
NS S (1.35)

Moreover, taking the trace of (4.35) with respect to the orthonormal bais (4.11)
and using (3.20), (4.8) and (4.10), we can find

ra=xs 20D, (4.36)
A? W ST %“(C“), (4.37)

Substituting (4.33),(4.34) and (4.36) into (4.32) and taking account of (3.20),
(4.8), (4.10), (4.35) and since ¢ = —1, we can see that

(FX)(p) = 0.



Special CR Maximal Dimensional Submanifolds in the Kenmotsu Space Forms 139

Thus we have for all X € D
X(p) = 0. (4.38)
Hence (4.38) with (4.29) and (4.31) completes the proof. O

Lemma 4.7. Let M be an (n + 1)-dimensional contact CR—submanifold of
(n — 1) contact CR—dimension in the Kenmotsu space form M(c). If the
equality (4.1) holds on M for a non-zero normal vector field p to M, then
the shape operator A has one eigenvalues A = 0 of multiplicities n + 1 or 2
etgenvalues 0, \ of multiplicities 1 and n, or 4 eigenvalues

0. A PTVPP=2X pH VP2 =20
b) ) 2 b) 2

n—1
2

eigenvalues 0, \, then the eigenvalue o corresponding to an eigenvector of A,
orthogonal to U and £, satisfies « = X\ = p/2 and vice-versa.

of multiplicities 1, 1, ”T_l and , respectively. Moreover, if A has exactly 2

Proof. If A = 0, the relation (4.30) implies that a; = 0. Otherwise, since
A # 0 from (4.30) the shape operator A has 2 eigenvalues 0, A of multiplicities
1 and n, or 4 constant eigenvalues

0. P= PP =2 p  p+/p*—2Xp

2 ’ 2
whose multiplicities are 1, 1, "T_l and ”7_1, respectively, with the help of
(3.20) and (4.8). Moreover, if A has exactly 2 eigenvalues 0 and A, then
a=\=p/2 O

Therefore we have one of the main result.

Theorem 4.8. Let M be a CR—submanifold of (n—1) contact C R-dimension
in the Kenmotsu space form M%H(fl). If, for any vector fields X,Y tangent

to M, the equality (4.1) holds on M for a non-zero normal vector field p to M
and the shape operator A of M has exactly one eigenvalue, then M is totally
geodesic submanifold.

Let’s assume now that A has exactly two distinct the eigenvalues. From
lemma 4.7, we put

T\ ={X eTM|AX = XX} =D®RU.
Then, we get the distributions 7.
Lemma 4.9. The distributions T, is involutive.
Proof. Let us choose X,Y € Ty and using (3.19), we have
9(VxY,§) = —g(X,Y),
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therefore
9([X,Y],€) =0. (4.39)
Now, for X,U € Ty and using (3.18), we have

Also, from the Codazzi equation, proposition 4.3, proposition4.6 and (4.23),
we get

g(vUX7 f) = —’U/(X)7
therefore
9([X,U),¢) =0. (4.40)

With selection X, Y € D and using (4.23), (4.26) and the Codazzi equation, it
follows that

0=(VxA)Y — (VyA)X = A\VxY — AVxY — AVy X + AVy X,

SO

1
Relations (4.39), (4.40) and (4.41) imply that, for all X,Y € T}, we have
9([X,Y],€) = 0.
Hence, [X,Y] € T\. This shows that the distribution T} is involutive. O

Now we consider the integral submanifolds M) for the distributions T} in
M and we consider the integral curve of the vector field £ and show it C(t). In
other words C’(t) = £. Hence the following theorem holds:

Theorem 4.10. Let M be a CR—submanifold of (n—1) contact C R-dimension
in the Kenmotsu space form M%-H(fl). If, for any vector fields X,Y tangent

to M, the equality (4.1) holds on M for a non-zero normal vector field p to M
and the shape operator A of M has exactly two eigenvalues, then M is locally
isometric to a product of C x M)y, which C is a geodesic curve and M) is
submanifold of M.

Let’s assume now that A has exactly four distinct the eigenvalues

0. A ao P VP2 57P+\/92*2>\P
b b - 2 b - 2 .

For eigenvalues of A, we put
Ty =D ®R{ ={X € D|AX = aX} ®RE,
T, =Dy ®RU ={X € D|AX =X} ®RU.

Then, we get two distributions T; and T5.
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Also, from lemma 4.7 we have a + 8 = p and for the vector field X on M,
if we have AX = aX, from (4.2) we have AFX = SFX. So that D; and Do
is F-anti-invariant subspace.

Lemma 4.11. The distributions T1 and Ty are both involutive.

Proof. By choosing X,Y € Ty and U € T, . Then, using (3.18), we have

9(VxY,U) =0,
therefore

o((X, Y], 1) = 0. (1.42)
Now, for X, £ € T} and Z € Ty. Then, using (3.19), we have

Also, from the Codazzi equation, proposition 4.3, proposition 4.6 and (4.23),
we get

9(VeX,Z) =0,
therefore

9([X,¢,2) = 0. (4.43)
With selection X,Y € D; and Z € D5 and using (4.23), (4.26) and the Codazzi
equation, it follows that

0=(VxAY — (VyA)X =aVxY — AVyY — aVy X + AVy X,

o
1
9([X,Y],Z) = ag(AVXY —AVyX,Z)=0. (4.44)
Relations (4.42), (4.43) and (4.44) imply that, for all X,Y € T} and Z € T,

we have

9([X,Y],Z) =0.
Hence, [X,Y] € Ti. This shows that the distribution 7j is involutive. In
entirely the same way, we prove that T is involutive. (I

Now we consider the integral submanifolds M7 and Ms respectively for the
distributions 77 and 75 in M. So that M; and M5 is F-anti-invariant subman-
ifolds.

Thus we have one of the main result.

Theorem 4.12. Let M be a CR—submanifold of (n—1) contact C R-dimension
in the Kenmotsu space form H%H(—l), If, for any vector fields X,Y tangent
to M, the equality (4.1) holds on M for a non-zero normal vector field p to
M and the shape operator A of M has exactly four eigenvalues, then M s
locally isometric to a product My X Mo, where My and Mo are F'—anti-invariant
submanifolds in M.



142

Samaneh Norouzi and Mohammad Ilmakchi

REFERENCES

1

10.

11.

12.

A. Bejancu, CR-submanifolds of Kaeher Manifold I, Proc. Amer. Math. Soc. 69(1978),
135-142.

. A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht,

Boston, Lancaster, Tokyo, 1986.

. D. E. Blair,, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics,

Vol. 509, Springer-Verlag, Berlin, 1976.

. M. Djoric and M. Okumura, Certain CR submanifolds of maximal CR dimension of

complex space forms, Diff. Geom. and App. 26(2008), 208-217.

. M. Djoric and M. Okumura, CR Submanifolds of Complex Projective Space, Develop-

ments in Mathematics, Vol. 19, Springer-Verlag, New York, 2010.

. M. Ilmakchi, CR Maximal Dimensional Submanifolds of Kenmotsu Space Forms, Viet-

nam J. Math., 50(2022), 171-181.

. M. Ilmakchi and E. Abedi, Contact CR Submanifolds of maximal contact CR dimension

of Sasakian Space Form, Mathematical Researches (Sci. Kharazmi University), 6(2020),
1-12.

. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J.

24(1972), 93-103.

. H. S. Kim, D. K. Choi and J. S. Pak, Certain class of contact CR-submanifolds of a

Sasakian space form, Commun. Korean Math. Soc. 29(2014), 131-140.

H. S. Kim and J. S. Pak, Certain contact CR-submanifolds of an odd-dimensional unit
sphere, Bull. Korean Math. Soc. 44(2007), 109-116.

H. S. Kim and J. S. Pak, Certain class of contact CR-submanifolds of an odd-dimensional
unit sphere, Taiwanese J. Math. 14(2010), 629-646.

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, Wiley and Sons
Inc. New York-London, 1963.

K. Yano and M. Kon, Structure on Manifold, World Scientific, Singapore, 1984.

Received: 08.09.2024
Accepted: 07.12.2024



	1. Introduction
	2. Preliminaries
	3. CR maximal dimensional submanifold structure
	4. Proof of the Main Theorem
	References

