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Abstract. In this paper, we study some geometric properties of Finsler
Y.—spaces with square metric. We prove that Finsler ¥ —spaces with square
(o, B)—metrics are Riemannian.
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1. Introduction

The geometry of invariant Finsler metrics on homogeneous manifolds is one
of the interesting subjects in Finsler geometry which has been studied by some
Finsler geometers, for example see [1, 11, 2, 12, 19, 7]. A smooth manifold M
with a system of diffeomorphisms {s;}.cas is said to be a regular s—manifold
if

(1): spz =,
(2): 8508y = S5,y O Sy
(3): (8z)sx — Id, is invertible.

Y. —spaces and reduced X—spaces were first introduced by Loos as a general-
ization of reflection spaces and symmetric spaces [17, 14, 21]. He then proved
that any Y—space with compact ¥ is a fibre bundle over a reduced Y —space.
The notion of generalized symmetric Finsler space is a natural generalization of
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generalized Riemannian symmetric spaces [10, 3, 8, 9, 15, 16, 20]. Basic prop-
erties of any reduced ¥—space M and affine, Riemannian and Finsler ¥—space
was given in [17, 14, 21].

In 1929, Berwald construct an interesting family of projectively flat Finsler
metrics on the unit ball B™ which as follows

(VI PP+ o + (0)
F= . (1.1)
(1~ (2P PP T (0)?

He showed that this class of metrics has constant flag curvature [5]. Berwald’s

metric can be expressed as

polath” (1.2)

«

where

Y T e N L,
(1—|z[*)? ’ (1—1azf?)*
An Finsler metric in the form (1.2) is called a square metric.

The object of this paper is to give a formula for flag curvature of ho-
mogeneous Finsler space with square metric. The square metric belong to
the class of (o, 8)-metrics. An («, 3)-metric is a Finsler metric of the form
F =a¢(s),s = g, where o = \/a;;(z)y*y’ is induced by a Riemannian metric
a = a;jdz" @ dz? on a connected smooth n-manifold M and 3 = b;(x)y’ is a
1-form on M [6, 13, 18, 19].

2. Preliminary

Let M be a smooth n-dimensional C'*° manifold and T'M be its tangent
bundle. A Finsler metric on a manifold M, is a non-negative function F' :
TM — R with the following properties [4]:

(1) F is smooth on the slit tangent bundle TM° := TM \ {0};
(2) F(z,\y) = AF(x,y) for any z € M,y € T, M and X > 0;
(3) The n x n Hessian matrix
1 0%F?
)= (L2F
2 Oy oy’
is positive definite at every point (z,y) € TMP°.
The following bilinear symmetric form g, : T, M x T, M — R is positive definite

1 02
gy(u,v) = 3 838tF2(w, Y+ su + tv)|s=t=0.
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Definition 2.1. Let oo = \/a;;(z)y*y’ be a Riemannian metric and B(x,y) =
bi(z)y' be a 1-form on an n-dimensional manifold M. Let

[1B(2)lla := 4/ @ ()b ()b; (x)
Now, let the function F is defined as follows
F .= = — 2.1
adls), s=", (21)

where ¢ = ¢(s) is a positive C™ function on —by,by satisfying
B(5) — 58 (s) + (b* — 52)¢"(5) > 0, 5| < b < by.

Then by lemma 1.1.2 of [6], F is a Finsler metric if ||B(x)]|la < bo for any
x € M. A Finsler metric in the form (2.1) is called an (o, §)-metric [1].

Let M be a smooth manifold. Suppose that @ and [ are a Riemannian
metric and a 1-form on M respectively. In this case we can write the square
metric on M as follows:

(a+B)?

«

where ¢(s) = 1+s%2+2s. The Riemannian metric a induce a linear isomorphism
between 1M and T, M. Then the 1-form [ corresponds to a vector field X
on M such that

a(Xa,y) = B(z,y).

(a+8)?

Therefore we can write the square metric F' = as follows:

(Valy,y) + a(Xe,9))*

Hen =T

3. Proof of Theorem

Y —spaces and reduced Y —spaces were first introduced by O. Loos as a gen-
eralization of reflection spaces and symmetric spaces. First of all, we shall recall
some definition and basic results about X—spaces. Following O. Loos we have

Definition 3.1. Let M be a smooth connected manifold, > a Lie group, and
w:MxXxM— M a smooth map. Then the triple (M, %, ) is a X—space
if it satisfies

(21): p(z,0,2) =
(B2): p(z,e.y) =y,
(B3): w0, (@, 7,y)) = p(x,07,y)

(B5): plx,o,pu(y, 7,2)) = wu(z, 0,y),070 ", p(, 0, 2))
where z,y,z € M, o,7 € ¥ and e is the identity element of . The triple
(M, %, 1) is usually just replaced by M.
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For a fixed point © € M we define a map o, : M — M by 0. (y) = u(z,0,y)
and a map o” : M — M by 0”(y) = oy(z). with respect to these maps the
above conditions became

(E,l): o () =z,

(22): €rx = ’idM,

(Z;): OuTe = (07,

(2y): O'xTyU.a:l = (O—To—il)gac(y)'
For each x € M by ¥, we denote the image of ¥ under the map ¥ — >,
0 — 0. For each 0 € ¥ we define (1,1) tensor field S on the ¥—space M
by

S°Xy =(04): Xy VreM,X,eT, M.

Clearly S is smooth.

Definition 3.2. A X—space M is a reduced X—space if for each x € M,
(1) T, M is generated by the set of all 0*(X,), that is

ToM = gen{(I — S9)X,| X, € T,M,0 € ¥},

(2) If X, € T:M and 6°X, =0 for all 0 € ¥ then X, = 0, and thus no
non-zero vector in T, M is fized by all S.

Definition 3.3. A Finsler ¥—space, denoted by (M, %, F') is a reduced ¥— space
together with a Finsler metric F' which is invariant under ¥, for p € M.

Theorem 3.4. Let (M, F) be a Finsler X—space with square metric F =
2

% defined by the Riemannian metric @ and the vector field X. Then

(M,%,a) is a Riemannian ¥ space.

Proof. Let o, be a diffeomorphism of (M, F) at x and let p € M. Then for
any Y € T, M we have

F(p7Y) = F(Ux(p)7d0m(y))

Then we have

(Va(V,Y) +a(X,, Y))? _ (ValdooY,dosY) + a(Xe, (), dosY))? 51)
a(Y,Y) a(do,Y,do,Y) ' '

Applying the above equation to —Y, we get

(Va(¥,Y) —a(X,,Y))* _ (Valdo,Y,do,Y) — a(Xo, ), doaY))?. (3.2)

a(Y,Y) a(do,Y, do,Y)

Subtracting equation (3.2) from (3.1) we get
W(X,,Y) = a(X,, (), dosY). (3.3)
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On the other hand, adding equation (3.2) and (3.1), we get
Q(Y,Y) +a(X,,Y)?  aldo,Y,do,Y) +a(X,, ), do,Y)?
ay,y) @(do,Y,do,Y) '
By putting (3.3) in (3.4), we get

(3.4)

(\/&(dawY, do,Y) — \/a(y, Y)) (a(X,,, Y)? - fa(do,Y,do, Y )\/a(y, Y)) =0
(3.5)
Therefore from (3.5) we have
a(ds,Y,ds, Y)=a(Y,Y).
Therefore o, is an isometry with respect to the Riemannian metric a. (I

Theorem 3.5. Let (M,X,a) be a Riemannian X space. Also suppose that F
is a square Finsler metric defined by a and a vector field X. Then (M,%, F)
is a square metric ¥ space if and only if X is o,—invariant for all x € M.

Proof. Let X be o,—invariant. Therefore for any p € M, we have X, (,) =

doyX,. Then for any Y € T, M we have

(Va(do,Y,do,Y) + a(X,, (p) do,Y))?
a(do,Y,do,Y)

(Va(do,Y,do,Y) + a(doy X,, do,Y))?
a(do,Y,do,Y)

(VaY.Y) +a(X,, Y))?

a(Y,Y)
= F(p,Y).

F(U:v (p), dO’wa) =

Conversely, let F' be a ¥);—invariant then for any p € M and y € T,M we
have
F(p,Y)= F(o,(p),do,Y)

which implies

(a(v,Y) +a(X,, V)2 + 2V/a(V.V)a(X,, V) ) Valdo, Y, do,Y) (3:6)
(a(dgxy, do,Y) + (X, (), d02Y)? + 2/a(do, Y, do,Y)i(X,, ), damY)> Va(y,v).
Substituting Y with —Y in (3.6), we obtain

(a(Y, Y) +a(X,,Y)? — 2/a(Y, YV)a(X,, Y)) a(do,Y,do,Y) (3.7)
(d(damY, do,Y) + (X, (), doaY)? — 2v/a(do,Y, oY )a(X,, ), dag;Y)> Valy,Y).
Subtracting (3.7) from (3.6) we get

W(X,,Y) = a(Xy, (), doa).

Therefore (do,), X, = X, (p)- O
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Theorem 3.6. A square metric ¥—space must be Riemannian

Proof. Let (M,%, F) be a Finsler Y¥—space with square metric F' = (atp)?

o
defined by the Riemannian meric @ and the vector field X and let o, be a

diffeomorphism of (M, F) defined by o.(y) = u(x,0,y). Then by the theorem
3.4 (M,a) is a Riemannian Y—space. Thus we have
(Va(do,Y,do,Y) + a(Xy,do,Y))?
a(do,Y,do,Y)
(Va(¥,Y) + a(X,, do,Y))?
a(Y,Y)

F(z,do,Y) =

= F(z,Y).

Therefore a(X,,doyy) = a(Xs,y), Yy € Ty M. The tangent map S7 = (doy),
is an orthogonal transformation of T, M without any nonzero fixed vectors. So
we have a(X,, (S —id),(y)) =0, Yy € T, M. Since (S — id), is an invertible
linear transformation, we have X, = 0, Vx € M. Hence F is Riemannian. [
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