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Abstract. In this paper, we study some geometric properties of Finsler

Σ−spaces with square metric. We prove that Finsler Σ−spaces with square
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1. Introduction

The geometry of invariant Finsler metrics on homogeneous manifolds is one

of the interesting subjects in Finsler geometry which has been studied by some

Finsler geometers, for example see [1, 11, 2, 12, 19, 7]. A smooth manifold M

with a system of diffeomorphisms {sx}x∈M is said to be a regular s−manifold

if

(1): sxx = x,

(2): sx ◦ sy = ssxy ◦ sx,
(3): (sx)∗x − Idx is invertible.

Σ−spaces and reduced Σ−spaces were first introduced by Loos as a general-

ization of reflection spaces and symmetric spaces [17, 14, 21]. He then proved

that any Σ−space with compact Σ is a fibre bundle over a reduced Σ−space.

The notion of generalized symmetric Finsler space is a natural generalization of

AMS 2020 Mathematics Subject Classification: 53C60, 53C30

55



56 Parastoo Habibi

generalized Riemannian symmetric spaces [10, 3, 8, 9, 15, 16, 20]. Basic prop-

erties of any reduced Σ−space M and affine, Riemannian and Finsler Σ−space

was given in [17, 14, 21].

In 1929, Berwald construct an interesting family of projectively flat Finsler

metrics on the unit ball Bn which as follows

F =

(√
(1− |x|2)|y|2 + ⟨x, y⟩2 + ⟨x, y⟩

)2

(1− |x|2)2
√

(1− |x|2)|y|2 + ⟨x, y⟩2
. (1.1)

He showed that this class of metrics has constant flag curvature [5]. Berwald’s

metric can be expressed as

F =
(α+ β)2

α
, (1.2)

where

α =

√
(1− |x|2)|y|2 + ⟨x, y⟩2

(1− |x|2)2
, β =

⟨x, y⟩
(1− |x|2)2

.

An Finsler metric in the form (1.2) is called a square metric.

The object of this paper is to give a formula for flag curvature of ho-

mogeneous Finsler space with square metric. The square metric belong to

the class of (α, β)-metrics. An (α, β)-metric is a Finsler metric of the form

F = αϕ(s), s = β
α , where α =

√
aij(x)yiyj is induced by a Riemannian metric

ã = aijdx
i
⊗

dxj on a connected smooth n-manifold M and β = bi(x)y
i is a

1-form on M [6, 13, 18, 19].

2. Preliminary

Let M be a smooth n-dimensional C∞ manifold and TM be its tangent

bundle. A Finsler metric on a manifold M , is a non-negative function F :

TM −→ R with the following properties [4]:

(1) F is smooth on the slit tangent bundle TM0 := TM \ {0};
(2) F (x, λy) = λF (x, y) for any x ∈ M,y ∈ TxM and λ > 0;

(3) The n× n Hessian matrix

(gij) =
(1
2

∂2F 2

∂yi∂yj

)
is positive definite at every point (x, y) ∈ TM0.

The following bilinear symmetric form gy : TxM×TxM → R is positive definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.
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Definition 2.1. Let α =
√
ãij(x)yiyj be a Riemannian metric and β(x, y) =

bi(x)y
i be a 1-form on an n-dimensional manifold M . Let

∥β(x)∥α :=
√

ãij(x)bi(x)bj(x)

Now, let the function F is defined as follows

F := αϕ(s), s =
β

α
, (2.1)

where ϕ = ϕ(s) is a positive C∞ function on −b0, b0 satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, |s| ≤ b < b0.

Then by lemma 1.1.2 of [6], F is a Finsler metric if ∥β(x)∥α < b0 for any

x ∈ M . A Finsler metric in the form (2.1) is called an (α, β)-metric [1].

Let M be a smooth manifold. Suppose that ã and β are a Riemannian

metric and a 1-form on M respectively. In this case we can write the square

metric on M as follows:

F =
(α+ β)2

α
= αϕ(s),

where ϕ(s) = 1+s2+2s. The Riemannian metric ã induce a linear isomorphism

between T ∗
xM and TxM . Then the 1-form β corresponds to a vector field X

on M such that

ã(Xx, y) = β(x, y).

Therefore we can write the square metric F = (α+β)2

α as follows:

F (x, y) =
(
√
ã(y, y) + ã(Xx, y))

2√
ã(y, y)

.

3. Proof of Theorem

Σ−spaces and reduced Σ−spaces were first introduced by O. Loos as a gen-

eralization of reflection spaces and symmetric spaces. First of all, we shall recall

some definition and basic results about Σ−spaces. Following O. Loos we have

Definition 3.1. Let M be a smooth connected manifold, Σ a Lie group, and

µ : M ×Σ×M −→ M a smooth map. Then the triple (M,Σ, µ) is a Σ−space

if it satisfies

(Σ1): µ(x, σ, x) = x,

(Σ2): µ(x, e, y) = y,

(Σ3): µ(x, σ, µ(x, τ, y)) = µ(x, στ, y)

(Σ5): µ(x, σ, µ(y, τ, z)) = µ(µ(x, σ, y), στσ−1, µ(x, σ, z))

where x, y, z ∈ M , σ, τ ∈ Σ and e is the identity element of Σ. The triple

(M,Σ, µ) is usually just replaced by M .
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For a fixed point x ∈ M we define a map σx : M −→ M by σx(y) = µ(x, σ, y)

and a map σx : M −→ M by σx(y) = σy(x). with respect to these maps the

above conditions became

(Σ
′

1): σx(x) = x,

(Σ
′

2): ex = idM ,

(Σ
′

3): σxτx = (στ)x
(Σ

′

4): σxτyσ
−1
x = (στσ−1)σx(y).

For each x ∈ M by Σx we denote the image of Σ under the map Σ −→ Σx,

σ −→ σx. For each σ ∈ Σ we define (1,1) tensor field Sσ on the Σ−space M

by

SσXx = (σx)∗Xx ∀x ∈ M,Xx ∈ TxM.

Clearly Sσ is smooth.

Definition 3.2. A Σ−space M is a reduced Σ−space if for each x ∈ M ,

(1) TxM is generated by the set of all σx(Xx), that is

TxM = gen{(I − Sσ)Xx|Xx ∈ TxM,σ ∈ Σ},

(2) If Xx ∈ TxM and σxXx = 0 for all σ ∈ Σ then Xx = 0, and thus no

non-zero vector in TxM is fixed by all Sσ.

Definition 3.3. A Finsler Σ−space, denoted by (M,Σ, F ) is a reduced Σ−space

together with a Finsler metric F which is invariant under Σp for p ∈ M .

Theorem 3.4. Let (M,Σ, F ) be a Finsler Σ−space with square metric F =
(α+β)2

α defined by the Riemannian metric ã and the vector field X. Then

(M,Σ, ã) is a Riemannian Σ space.

Proof. Let σx be a diffeomorphism of (M,F ) at x and let p ∈ M . Then for

any Y ∈ TpM we have

F (p, Y ) = F (σx(p), dσx(Y )).

Then we have

(
√

ã(Y, Y ) + ã(Xp, Y ))2√
ã(Y, Y )

=
(
√

ã(dσxY, dσxY ) + ã(Xσx(p), dσxY ))2√
ã(dσxY, dσxY )

. (3.1)

Applying the above equation to −Y , we get

(
√

ã(Y, Y )− ã(Xp, Y ))2√
ã(Y, Y )

=
(
√

ã(dσxY, dσxY )− ã(Xσx(p), dσxY ))2√
ã(dσxY, dσxY )

. (3.2)

Subtracting equation (3.2) from (3.1) we get

ã(Xp, Y ) = ã(Xσx(p), dσxY ). (3.3)
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On the other hand, adding equation (3.2) and (3.1), we get

ã(Y, Y ) + ã(Xp, Y )2√
ã(Y, Y )

=
ã(dσxY, dσxY ) + ã(Xσx(p), dσxY )2√

ã(dσxY, dσxY )
. (3.4)

By putting (3.3) in (3.4), we get(√
ã(dσxY, dσxY )−

√
ã(Y, Y )

)(
ã(Xp, Y )2 −

√
ã(dσxY, dσxY )

√
ã(Y, Y )

)
= 0.

(3.5)

Therefore from (3.5) we have

ã(dsxY, dsxY ) = ã(Y, Y ).

Therefore σx is an isometry with respect to the Riemannian metric ã. □

Theorem 3.5. Let (M,Σ, ã) be a Riemannian Σ space. Also suppose that F

is a square Finsler metric defined by ã and a vector field X. Then (M,Σ, F )

is a square metric Σ space if and only if X is σx−invariant for all x ∈ M .

Proof. Let X be σx−invariant. Therefore for any p ∈ M , we have Xσx(p) =

dσxXp. Then for any Y ∈ TpM we have

F (σx(p), dσxYp) =
(
√

ã(dσxY, dσxY ) + ã(Xσx(p), dσxY ))2√
ã(dσxY, dσxY )

=
(
√

ã(dσxY, dσxY ) + ã(dσxXp, dσxY ))2√
ã(dσxY, dσxY )

=
(
√

ã(Y, Y ) + ã(Xp, Y ))2√
ã(Y, Y )

= F (p, Y ).

Conversely, let F be a ΣM−invariant then for any p ∈ M and y ∈ TpM we

have

F (p, Y ) = F (σx(p), dσxY )

which implies (
ã(Y, Y ) + ã(Xp, Y )2 + 2

√
ã(Y, Y )ã(Xp, Y )

)√
ã(dσxY, dσxY ) =(3.6)(

ã(dσxY, dσxY ) + ã(Xσx(p), dσxY )2 + 2
√
ã(dσxY, dσxY )ã(Xσx(p), dσxY )

)√
ã(Y, Y ).

Substituting Y with −Y in (3.6), we obtain(
ã(Y, Y ) + ã(Xp, Y )2 − 2

√
ã(Y, Y )ã(Xp, Y )

)√
ã(dσxY, dσxY ) =(3.7)(

ã(dσxY, dσxY ) + ã(Xσx(p), dσxY )2 − 2
√
ã(dσxY, dσxY )ã(Xσx(p), dσxY )

)√
ã(Y, Y ).

Subtracting (3.7) from (3.6) we get

ã(Xp, Y ) = ã(Xσx(p), dσxY ).

Therefore (dσx)pXp = Xσx(p). □
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Theorem 3.6. A square metric Σ−space must be Riemannian

Proof. Let (M,Σ, F ) be a Finsler Σ−space with square metric F = (α+β)2

α

defined by the Riemannian meric ã and the vector field X and let σx be a

diffeomorphism of (M,F ) defined by σx(y) = µ(x, σ, y). Then by the theorem

3.4 (M, ã) is a Riemannian Σ−space. Thus we have

F (x, dσxY ) =
(
√

ã(dσxY, dσxY ) + ã(Xx, dσxY ))2√
ã(dσxY, dσxY )

=
(
√

ã(Y, Y ) + ã(Xx, dσxY ))2√
ã(Y, Y )

= F (x, Y ).

Therefore ã(Xx, dσxy) = ã(Xx, y), ∀y ∈ TxM . The tangent map Sσ = (dσx)x
is an orthogonal transformation of TxM without any nonzero fixed vectors. So

we have ã(Xx, (S
σ − id)x(y)) = 0 , ∀y ∈ TxM . Since (S − id)x is an invertible

linear transformation, we have Xx = 0, ∀x ∈ M . Hence F is Riemannian. □
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5. L. Berwald, Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die
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