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Abstract: The notion of a weakly symmetric and weakly projective symmetric

Riemannian manifolds have been introduced by Tamassy and Binh [11],[12] and

then after studied by so many authors such as De, Shaikh and Jana, Shaikh and

Hui, Shaikh, Jana and Eyasmin ([1], [3], [4], [5], [6], [7], [8]). Recently, Singh

and Khan [10] introduced the notion of Special weakly symmetric Riemannian

manifolds and denoted such manifold by (SWS)n. A.U. Khan and Q. Khan

found some results On Special Weakly Projective Symmetric Manifolds [13].

And P. Verma, P. Kanaujia and S. Kishor found some results on M-Projective

Curvature Tensor on (k, µ)- Contact Space Forms and Sasakian-Space-Forms

([16], [17]) . Motivated from the above, we have studied the nature of Ricci

tensor R of type (1,1) in a special weakly M-projective symmetric Riemannian

manifold (SWMS)n and also explored some interesting results on (SWMS)n.
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Einstein manifold, Special weakly M-projective symmetric Riemannian mani-

fold, Codazzi type.

1. Introduction

Let (Mn, g) be a Riemannian manifold of dimension n with the Riemannian

metric g and ζ(M) denote the set of differentiable vector fields on Mn. Let

K(X,Y, Z) be the Riemannian curvature tensor of type (1,3) for X,Y, Z ∈
ζ(M). A non flat Riemannian manifold (Mn, g), (n ≥ 2) is called a special

weakly symmetric Riemannian manifold, if its curvature tensor K of type (1,3)

satisfies the following condition [10].

(DXK)(Y, Z, V ) = 2α(X)K(Y, Z, V ) + α(Y )K(X,Z, V )

+α(Z)K(Y,X, V ) + α(V )K(Y,Z,X),
(1.1)

where α is a non-zero 1-form and ρ is associated vector field such that

α(X) = g(X, ρ) (1.2)

for every vector field X and D denotes the operator of covariant differentiation

with respect to the metric g. Such a manifold is denoted by (SWS)n. In case,

the 1-form α is zero, then (SWS)n becomes locally symmetric manifold [9]. If

we replace K by F̃ in (1.1), then it becomes

(DX F̃ )(Y,Z, V ) = 2α(X)F̃ (Y,Z, V ) + α(Y )F̃ (X,Z, V )

+α(Z)F̃ (Y,X, V ) + α(V )F̃ (Y,Z,X)
(1.3)

where F̃ is the M-Projective curvature tensor defined by

F̃ (Y, Z, V ) = K(Y,Z, V )− 1

4n

[
g(Z, V )QY − g(Y, V )QZ

+Ric(Z, V )Y −Ric(Y, V )Z
]
(1.4)

Here Ric is the Ricci tensor of type (0,2). Such an n-dimensional Riemannian

manifold shall be called a special weakly M-projective symmetric Riemannian

manifold and such a manifold is denoted by (SWMS)n.

If a Riemannian manifold is Einstein, then

Ric(X,Y ) = λg(X,Y ) (1.5)

where λ is constant. From (1.5), we have

R(X) = λX, (1.6)

where R is the Ricci tensor of type (1,1) and is defined by [2]

g(R(X), Y ) = Ric(X,Y ). (1.7)

Contracting (1.6) with respect to X, we get

r = nλ (1.8)



50 Shyam Kishor and Anoop Kumar Verma

where r is a scalar curvature.

The above results will be used in the next section.

2. Existence of a (SWMS)n

Let (Mn, g) be a (SWMS)n. Taking covariant derivative of (1.4) with re-

spect to X and then using (1.3), we get

2α(X)F̃ (Y,Z, V ) + α(Y )F̃ (X,Z, V ) + α(Z)F̃ (Y,X, V ) + α(V )F̃ (Y, Z,X)

= (DXK)(Y, Z, V )− 1

4n

[
(DXRic)(Z, V )Y − (DXRic)(Y, V )Z

]
.

(2.1)

By virtue of (1.4), the relation (2.1) reduces to

(DXK)(Y,Z, V )− 2α(X)K(Y, Z, V )− α(Y )K(X,Z, V )− α(Z)K(Y,X, V )

−α(V )K(Y,Z,X)− 1

(4n)

[
(DXRic)(Z, V )Y − (DXRic)(Y, V )X

−2α(X)
{
g(Z, V )QY − g(Y, V )QZ +Ric(Z, V )Y −Ric(Y, V )Z

}
−α(Y )

{
g(Z, V )QX − g(X,V )QZ +Ric(Z, V )X −Ric(X,V )Z

}
−α(Z)

{
g(X,V )QY − g(Y, V )QX +Ric(X,V )Y −Ric(Y, V )X

}
−α(V )

{
g(Z,X)QY − g(Y,X)QZ +Ric(Z,X)Y −Ric(Y,X)Z

}]
= 0.

(2.2)

Permuting equation (2.2) twice with respect to X,Y, Z; and then adding the

three obtained equations and using Bianchi’s first and second identities; sym-

metric property of Ricci tensor and the skew- symmetric properties of curvature

tensor, we get

(DXRic)(Z, V )Y + (DY Ric)(X,V )Z + (DZRic)(Y, V )X

−(DY Ric)(Z, V )X − (DZRic)(X,V )Y = 0.
(2.3)

Theorem 2.1. In a (SWMS)n, the Ricci tensor of type (1,1) is of Codazzi

type.

Proof. Contracting (2.3) with respect to X, we get

(DZRic)(Y, V )− (DY Ric)(Z, V ) = 0 (2.4)

Consequently in view of (1.7), the relation (2.4) gives

(DZR)(Y )− (DY R)(Z) = 0. (2.5)

(2.5) shows that the Ricci tensor of type (1,1) is of Codazzi type. □

Theorem 2.2. In a (SWMS)n, the scalar curvature r is constant.
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Proof. Contracting (2.5) with respect to Y , we get

Z r = 0

which shows that the scalar curvature r is constant. □

Theorem 2.3. The necessary and sufficient condition for an Einstein (SWMS)n
to be a (SWS)n is that

[2α(X)QY + λY + α(Y )QX + λX]g(Z, V ) − [2α(X)QZ + λZ + α(Z)QX +

λX]g(Y, V ) + [α(Z)QY + λY − α(Y )QZ − λZ]g(X,V ) + α(V )[g(Z,X)QY −
g(Y,X)QZ + λg(Z,X)Y − λg(Y,X)Z] = 0.

Proof. By virtue of (1.5), the equation (1.4) reduces to the form

F̃ (Y,Z, V ) = K(Y, Z, V )− 1

(4n)

[
g(Z, V )QY − g(Y, V )QZ

+λ{g(Z, V )Y − g(Y, V )Z}
]
. (2.6)

Taking covariant derivative of (2.6) with respect to X, we get

(DX F̃ )(Y,Z, V ) = (DXK)(Y,Z, V ). (2.7)

Using (1.3) in (2.7), we get

(DXK)(Y,Z, V ) = 2α(X)F̃ (Y,Z, V ) + α(Y )F̃ (X,Z, V ) + α(Z)F̃ (Y,X, V )

+α(V )F̃ (Y, Z,X).(2.8)

By virtue of (2.6), the relation (2.8) reduces to the form

(DXK)(Y,Z, V ) = 2α(X)
[
K(Y,Z, V )− 1

(4n)

{
g(Z, V )QY − g(Y, V )QZ

+λ{g(Z, V )Y − g(Y, V )Z}
}]

+ α(Y )

[
K(X,Z, V )

− 1

(4n)

{
g(Z, V )QX − g(X,V )QZ + λ{g(Z, V )X − g(X,V )Z}

}]

+α(Z)

[
K(Y,X, V )− 1

(4n)

{
g(X,V )QY − g(Y, V )QX

+λ{g(X,V )Y − g(Y, V )X}
}]

+ α(V )

[
K(Y,Z,X)

− 1

(4n)

{
g(Z,X)QY − g(Y,X)QZ + λ{g(Z,X)Y − g(Y,X)Z}

}]
.

(2.9)

This completes the proof. □
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3. Manifold satisfying F̃ (Y, Z, V ) = 0

Let (Mn, g) be a M-projectively flat, that is, F̃ (Y, Z, V ) = 0, then the rela-

tion (1.4) reduces to

K(Y,Z, V ) =
1

4n

[
g(Z, V )QY −g(Y, V )QZ+Ric(Z, V )Y −Ric(Y, V )Z

]
. (3.1)

Taking covariant derivative of (3.1) with respect to X, we have

(DXK)(Y,Z, V ) =
1

4n

[
(DXRic)(Z, V )Y − (DXRic)(Y, V )Z

]
. (3.2)

Permuting equation (3.2) twice with respect to X,Y,Z; and then adding the

three obtained equations and using Bianchi’s second identity, we have

(DXRic)(Z, V )Y + (DY Ric)(X,V )Z + (DZRic)(Y.V )X

−(DXRic)(Y, V )Z − (DY Ric)(Z, V )X − (DZRic)(X,V )Y = 0.
(3.3)

Theorem 3.1. In a M-projectively flat Riemannian manifold, the Ricci tensor

R of type (1,1) is of Codazzi type.

Proof. Contracting (3.3) with respect to X, we have

(DZRic)(Y, V )− (DY Ric)(Z, V ) = 0. (3.4)

Consequently in view of (1.7), the relation (3.4) gives

(DZR)(Y )− (DY R)(Z) = 0. (3.5)

This completes the proof. □

Definition 3.2. An n-dimensional Riemannian manifold is called a special

weakly Ricci symmetric manifold [10] if the Ricci tensor Ric of type (0,2) sat-

isfies the following condition:

(DXRic)(Y,Z) = 2α(X)Ric(Y, Z) + α(Y )Ric(X,Z) + α(Z)Ric(Y,X), (3.6)

where α is a non-zero 1-form. Such a manifold is denoted by (SWRS)n. Now

using (3.6) in (3.3), we have

α(X)Ric(Z, V )Y + α(Y )Ric(X,V )Z + α(Z)Ric(Y, V )X

−α(X)Ric(Y, V )Z − α(Y )Ric(Z, V )X − α(Z)Ric(X,V )Y = 0.
(3.7)

Theorem 3.3. In a M-projectively flat (SWRS)n, 1-form α is collinear with

the Ricci tensor R.

Proof. Contracting (3.7) with respect to X, we have

α(Z)Ric(Y, V )− α(Y )Ric(Z, V ) = 0. (3.8)

which in veiw of (1.7) gives

α(Z)g(R(Y ), V )− α(Y )g(R(Z), V ) = 0. (3.9)
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Consequently the above relation turns into

α(Z)R(Y )− α(Y )R(Z) = 0. (3.10)

□

Theorem 3.4. In a (SWMS)n, if a Riemannian manifold is a (SWRS)n,

the 1-form α is collinear with the Ricci tensor R. of type (1,1).

Proof. Taking covariant derivative of (1.4) with respect to X, we have

(DX F̃ )(Y, Z, V ) = (DXK)(Y,Z, V )− 1

4n

[
(DXRic)(Z, V )Y

−(DXRic)(Y, V )Z
]
. (3.11)

Permutating equation (3.11) twice with respect to X,Y,Z; and then adding the

three obtained equations and using Bianchi’s second identity, we have

(DX F̃ )(Y, Z, V ) + (DY F̃ )(Z,X, V ) + (DZ F̃ )(X,Y, V )

= − 1

4n

[
(DXRic)(Z, V )Y − (DXRic)(Y, V )Z + (DY Ric)(X,V )Z

−(DY Ric)(Z, V )X + (DZRic)(Y, V )X − (DZRic)(X,V )Y
]
.

(3.12)

Using (1.3) and (3.6) in and taking in mind the skew- symmetric of F̃ (X,Y, Z),

cyclic property of F̃ (X,Y, Z) and symmetric property of Ricci tensor of type

(0,2), we have

α(X)Ric(Z, V )Y − α(X)Ric(Y, V )Z + α(Y )Ric(X,V )Z

−α(Y )Ric(Z, V )X + α(Z)Ric(Y, V )X − α(Z)Ric(X,V )Y = 0
(3.13)

Contracting (3.13) with respect to X, we have

(n− 2)α(Z)Ric(Y, V )− (n− 2)α(Y )Ric(Z, V ) = 0, (3.14)

which in view of (1.7) the relation (3.14) gives

α(Z)g(R(Y ), V )− α(Y )g(R(Z), V ) = 0. (3.15)

Consequently the relation (3.15) gives

α(Z)R(Y )− α(Y )R(Z) = 0. (3.16)

□
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