Special projective algebra of exponential metrics of isotropic S-curvature

Seyedeh Yasaman Sadati ${ }^{a *}$ and Mehdi Rafie-Rad ${ }^{b}$
${ }^{a}$ Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran, Babolsar, Iran.
${ }^{b}$ Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran, Babolsar, Iran.
E-mail: s.sadati01@umail.umz.ac.ir
E-mail: m.rafie-rad@umz.ac.ir

Abstract

Exponential metrics are popular Finsler metrics. Let F be an exponential (α, β)-metric of isotropic S-curvature on manifold M. In this paper, We study a Lie sub-algebra of projective vector fields of a Finsler metric F is introduced and denoted by $\mathrm{SP}(\mathrm{F})$. We classify $\mathrm{SP}(\mathrm{F})$ of isotropic S-curvature as a certain Lie sub-algebra of the Killing algebra $K(M, \alpha)$.

Keywords: Projective vector field, Exponential Finsler metirc, S-curvature.

1. Introduction

The projective Finsler metrics are smooth solutions to the historical Hilbert's fourth problem. The projective vector fields are a way to characterize the projective metrics. The collection of all projective vector fields on a Finsler space is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra denoted by $p(M, F)$. The collection of all projective vector fields on a Finsler space $p(M, F)$ is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra. A specific Lie sub-algebra of projective algebra of Finsler spaces, called the special projective algebra and denoted by $S P(F)$.

[^0]In [8], Rafie-Rad studied on the projective vector fields on the class of Randers metrics and introduced Lie sub-algebra of projective vector fields of a Finsler metric. In [4], B. Rezaei and M.Rafie-Rad studied the projective algebra of some (α, β)-metrics of isotropic S-curvature. In [10], the auther show that if the Matsumoto metric admits a projective vector field, then this is a conformal vector field with to Riemannianmetric α or F has vanishing S-curvature.

In this paper, we characterize the special projective vector field V on manifold M with exponential metric of isotropic S-curvature. We prove the following theorem:

Theorem 1.1. Let $\left(M, F=\alpha e^{\beta / \alpha}\right)$ be exponential metric of isotropic S curvature on a manifold and $b:=\|\beta\|_{\alpha}$ is constant. Then one of the following statements holds:
(a) β is parallel with respect to α and the projective algebra $p(M, F)$ of F is coincides with the projective algebra $p(M, \alpha)$ of α.
(b) Every special projective vector field V on (M, F) is an Killing vector field on (M, α) and $£_{\hat{V}} \beta=0$.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M. It induces a spray G on $T M$. In local coordinates in $T M$, it is expressed by

$$
\mathbf{G}=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i}(x, y) \frac{\partial}{\partial y^{i}}
$$

where $G^{i}(x, y)$ are local functions on $T M_{0}$ satisfying $G^{i}(x, \lambda y)=\lambda^{2} G^{i}(x, y) \quad \lambda>$ 0 . Assume the following conventions:

$$
G_{j}^{i}=\frac{\partial G^{i}}{\partial y^{i}}, \quad G_{j k}^{i}=\frac{\partial G_{j}^{i}}{\partial y^{k}}, \quad G_{j k l}^{i}=\frac{\partial G_{j k}^{i}}{\partial y^{l}}
$$

The local functions $G^{i}{ }_{j k}$ give rise to a torison-free connection in $\pi^{*} T M$ called the berwald connection which is this paper, see [5].

Let

$$
\alpha(\mathbf{y}):=\sqrt{g_{i j}(x) y^{i} y^{j}}, \quad \mathbf{y}=\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x} \in T_{x} M
$$

α is a family of Euclidean norms on tangent spaces. Let $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ be a Riemannian metric and $\beta=b_{i}(x) y^{i}$ a 1 -form on a manifold M. An (α, β)-metric is a scalar function F on $T M$ defined by $F:=\alpha \phi\left(\frac{\beta}{\alpha}\right)$, where $\phi=\phi(s)$ is a C^{∞} on $\left(-b_{0}, b_{0}\right)$ with certain regularity such that F is a positive definite Finsler metric. A special (α, β)-metric defined by $\phi(s)=e^{s}$ is called exponential metric.

Denote the Levi-Civita connection of α by ∇ and define $b_{i \mid j}$ by $\left(b_{i \mid j}\right) \theta^{j}:=$ $d b_{i}-b_{j} \theta_{i}{ }^{j}$, where $\theta^{i}:=d x^{i}, \theta_{i}{ }^{j}:=\Gamma_{i k}^{j} d x^{k}$.

In order to study the geometric properties of (α, β)-metrics, one needs a formula for the spray coefficients of an (α, β)-metrics. Let

$$
\begin{gathered}
r_{i j}=\left(\nabla_{j} b_{i}+\nabla_{i} b_{j}\right) / 2, \quad s_{i j}=\left(\nabla_{j} b_{i}-\nabla_{i} b_{j}\right) / 2, \quad r_{j}^{i}:=a^{i k} r_{k j} \\
r_{\circ \circ}:=r_{i j} y^{i} y^{j}, \quad r_{i \circ}:=r_{i j} y^{j}, \quad s^{i}{ }_{j}:=a^{i k} s_{k j}, \\
s_{j}:=b^{i} s_{i j}, \quad s_{\circ}:=s_{i} y^{i}, \quad s_{i \circ}:=s_{i j} y^{j}
\end{gathered}
$$

The spray coefficients G^{i} of F and G_{α}^{i} of α are related as follows:

$$
\begin{aligned}
& G^{i}=G_{\alpha}^{i}+\alpha Q s_{\circ}^{i}+\alpha^{-1} \Theta\left\{r_{\circ \circ}-2 \alpha Q s_{\circ}\right\} y^{i}+\Psi\left\{r_{\circ \circ}-2 \alpha Q s_{\circ}\right\} b^{i},(2.1) \\
& Q=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \Theta=\frac{\phi \phi^{\prime}-s\left(\phi \phi^{\prime \prime}-\phi^{\prime} \phi^{\prime}\right)}{2\left\{\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right\}}, \\
& \Psi=\frac{\phi^{\prime \prime}}{2\left\{\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right\}} .
\end{aligned}
$$

There is a notion of distortion $\tau=\tau(x, y)$ on $T M$ associated with the BusemannHausdorff volume form on manifold, i.e., $d V_{F}=\sigma_{F}(x) d x^{1} \cdots d x^{n}$, which is defined by

$$
\begin{gather*}
\tau(\mathbf{y}):=\ln \left[\frac{\sqrt{\operatorname{det}\left(g_{i j}(x, y)\right)}}{\sigma_{F}(x)}\right] \\
\sigma_{F}(x):=\frac{\operatorname{Vol}\left(\mathbb{B}^{n}(1)\right)}{\operatorname{Vol}\left\{\left(y^{i}\right) \in \mathrm{R}^{n} \left\lvert\, F\left(\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x}\right)<1\right.\right\}} \tag{2.2}
\end{gather*}
$$

For a vector $\mathbf{y} \in T_{x} M$. Let $c(t),-\epsilon<t<\epsilon$, denote the geodesic with $c(0)=x$ and $\dot{c}(0)=\mathbf{y}$. Define

$$
\mathbf{S}(\mathbf{y}):=\left.\frac{d}{d t}[\tau(\dot{c}(t))]\right|_{t=0}
$$

We say S-curvature is isotropic if there exists a scalar function $c(x)$ on M such that $S(x, y)=(n+1) c(x) F(x, y)$, and constant S-curvature if $c(x)=$ constant, see $[2,6,7]$.

Let $G^{i}(x, y)$ denote the geodesic coefficients of F in the same local coordinate system. By the definition of the S-curvature, we have

$$
\begin{equation*}
\mathbf{S}(\mathbf{y}):=\frac{\partial G^{i}}{\partial y^{i}}(x, y)-y^{i} \frac{\partial}{\partial x^{i}}\left[\ln \sigma_{F}(x)\right] \tag{2.3}
\end{equation*}
$$

where $\mathbf{y}=\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x} \in T_{x} M$. It is proved that $\mathbf{S}=0$ if F is a Berwald metric [5]. There are many non-Berwald metrics satisfying $\mathbf{S}=0$. To prove the Theorem 1.1, we need the following theorem which is proved in [3].

Theorem 2.1. Let $F=\alpha \phi(s), s=\beta / \alpha$ be $a(\alpha, \beta)$-metric on a manifold of dimension n and $b:=\|\beta\|_{\alpha}$ is constant. Suppose that

$$
\phi \neq k_{1} \sqrt{1+k_{2} s^{2}}+k_{3} s
$$

for any constant $k_{1}>0, k_{2}$ and k_{3}. Then F is of isotropic S-curvature, $S=(n+1) c F$, if and only if one of the following holds:
(i) β satisfies

$$
\begin{equation*}
r_{i j}=\varepsilon\left(b^{2} a_{i j}-b_{i} b_{j}\right), s_{j}=0 \tag{2.4}
\end{equation*}
$$

where $\varepsilon=\varepsilon(x)$ is a scalar function and $\phi=\phi(s)$ satisfies

$$
\Phi=-2(n+1) k \frac{\phi \Delta^{2}}{b^{2}-s^{2}}
$$

where k is a constant. In this case, $S=(n+1) c F$ with $c=k \varepsilon$.
(ii) β satisfies

$$
\begin{equation*}
r_{i j}=0, s_{j}=0 \tag{2.5}
\end{equation*}
$$

In this case, $S=0$, regardless of the choice of a particular ϕ.

3. Projective vector fields on Finsler spaces

Every vector field X on M induces naturally a transformation under the following infinitesimal coordinate transformations on $T M,\left(x^{i}, y^{i}\right) \longrightarrow\left(\bar{x}^{i}, \bar{y}^{i}\right)$ given by

$$
\bar{x}^{i}=x^{i}+V^{i} d t, \quad \bar{y}^{i}=y^{i}+y^{k} \frac{\partial V^{i}}{\partial x^{k}} d t
$$

This leads us to the notion of the complete lift \hat{V} (see [9]) of V to a vector field on $T M_{0}$ given by

$$
\hat{V}=V^{i} \frac{\partial}{\partial x^{i}}+y^{k} \frac{\partial V^{i}}{\partial x^{k}} \frac{\partial}{\partial y^{i}}
$$

Almost any geometric object in Finsler geometry depends on the both points and velocities, hence the Lie derivatives of such geometric objects should rather should be regarded with respect to \hat{V}. For computational use, it is known $£_{\hat{V}} y^{i}=0, £_{\hat{V}} d x^{i}=0$ and the differential operators $£_{\hat{V}}, \frac{\partial}{\partial x^{i}}$, exterior differential operator d and $\frac{\partial}{\partial y^{i}}$ commute as well. The vector field V is called a projective vector field, if there is a function P on $T M_{0}$ such that

$$
£_{\hat{V}} G_{k}^{i}=P \delta_{k}^{i}+P_{k} y^{i},
$$

where $P_{k}=P_{. k}$, see [1]. Thereby, given any appropriate t, the local flow $\left\{\phi_{t}\right\}$ associated to V is projective transformation. If V is a projective vector field, then [1]:

$$
\begin{aligned}
£_{\hat{V}} G^{i} & =P y^{i}, \\
£_{\hat{V}} G^{i}{ }_{j k} & =\delta^{i}{ }_{j} P_{k}+\delta^{i}{ }_{k} P_{j}+y^{i} P_{k . j}, \\
£_{\hat{V}} G^{i}{ }_{j k l} & =\delta^{i}{ }_{j} P_{k . l}+\delta^{i}{ }_{k} P_{j . l}+\delta^{i}{ }_{l} P_{k . j}+y^{i} P_{k . j . l}, \\
2 £_{\hat{V}} \mathbf{E}_{j l} & =(n+1) P_{j . l} .
\end{aligned}
$$

On the Riemannian spaces, given any projective vector field V the function $P=P(x, y)$ is linear with respect to y. A projective vector field V is called a special projective vector field if $£_{\hat{V}} \mathbf{E}=0$, equivalently, $P(x, y)=P_{i}(x) y^{i}$.

Remark 3.1. On a weakly-Berwald space, every projective vector field is special.

4. Proof of Theorem 1.1

Let $F=\alpha e^{s}, s:=\beta / \alpha$ be exponential Finsler metric of isotropic S-curvature on a manifold M and $b:=\|\beta\|_{\alpha}$ is constant. According to theorem 2.1, F is of isotropic S-curvature, $S=(n+1) c F$, if and only if β satisfies $r_{i j}=$ $\varepsilon\left(b^{2} a_{i j}-b_{i} b_{j}\right), s_{j}=0$ or $r_{i j}=0, s_{j}=0$. Plugging $r_{i j}=\varepsilon\left(b^{2} a_{i j}-b_{i} b_{j}\right), s_{j}=0$ in (2.1) the geodesic coefficients of F can be calculated by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\frac{\alpha^{2}}{\alpha-\beta} s_{\circ}^{i}+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) y^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} e^{s}+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) b^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} \alpha \tag{4.1}
\end{equation*}
$$

Assuming $s_{\circ}^{i}=0$, equation (4.1) can be seen as follows:

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) y^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} e^{s}+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) b^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} \alpha \tag{4.2}
\end{equation*}
$$

Let us suppose that V is a projective vector field on (M, F). By assuming, V is a special projective field, that is to exists a function P of the form $P(x, y)=$ $P_{k}(x) y^{k}$ on M such that

$$
£_{\hat{V}} G^{i}=P y^{i}
$$

If $s_{\circ}^{i}=0$, by (4.2) we can write this equation as follows

$$
£_{\hat{V}}\left(G_{\alpha}^{i}+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) y^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} e^{s}+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) b^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} \alpha\right)=P y^{i}
$$

Therefore, Equation mentioned above is equivalent to the following equality

$$
\begin{aligned}
0= & -P y^{i}+£_{\hat{V}} G_{\alpha}^{i}+\frac{\varepsilon\left(e^{s} y^{i}+\alpha b^{i}\right)}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} £_{\hat{V}}\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) \\
& +\frac{\varepsilon\left(e^{s} y^{i}+\alpha b^{i}\right)\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right)}{\left(2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}\right)^{2}} £_{\hat{V}}\left(2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}\right) \\
& +\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right)}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} £_{\hat{V}}\left(e^{s} y^{i}+\alpha b^{i}\right)
\end{aligned}
$$

Let us denote

$$
t_{\mathrm{o} \circ}=£_{\hat{V}} \alpha^{2}
$$

By simplifying above equation and multiplying both sides of this very equation by $\alpha^{3}\left(2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}\right)^{2}$, we can rewrite (4.3) as follows:

$$
\begin{equation*}
K(x, y) \alpha+R(x, y) e^{s}=0 \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
K(x, y)= & \alpha^{8}\left(2 b^{i} \varepsilon £_{\hat{V}} b^{2}+2 b^{2} \varepsilon £_{\hat{V}} b^{i}+2 b^{4} \varepsilon £_{\hat{V}} b^{i}\right) \\
& +\alpha^{7}\left(2 b^{2} b^{i} \varepsilon £_{\hat{V}} \beta-2 \beta \varepsilon b^{i} £_{\hat{V}} b^{2}-2 \beta \varepsilon b^{2} £_{\hat{V}} b^{i}\right) \\
& +\alpha^{6}\left(-4 P y^{i}+4 £_{\hat{V}} G_{\alpha}^{i}-8 b^{2} P y^{i}+8 b^{2} £_{\hat{V}} G_{\alpha}^{i}-4 b^{4} P y^{i}\right. \\
& +4 b^{4} £_{\hat{V}} G_{\alpha}^{i}-2 \beta^{2} \varepsilon £_{\hat{V}} b^{i}-4 b^{2} \beta^{2} \varepsilon £_{\hat{V}} b^{i}+2 b^{4} b^{i} \varepsilon t_{\circ \circ} \\
& \left.+2 b^{2} \varepsilon t_{\circ \circ} b^{i}-4 b^{i} \beta \varepsilon £_{\hat{V}} \beta\right) \\
& +\alpha^{5}\left(8 \beta P y^{i}-8 \beta £_{\hat{V}} G_{\alpha}^{i}+8 \beta b^{2} P y^{i}-8 \beta b^{2} £_{\hat{V}} G_{\alpha}^{i}\right. \\
& \left.+2 b^{i} \beta^{2} \varepsilon £_{\hat{V}} \beta-3 \beta b^{2} b^{i} \varepsilon t_{\circ \circ}+2 \beta^{3} \varepsilon £_{\hat{V}} b^{i}\right) \\
& +\alpha^{4}\left(4 \beta^{2} P y^{i}-4 \beta^{2} £_{\hat{V}} G_{\alpha}^{i}+8 b^{2} \beta^{2} P y^{i}\right. \\
& \left.-8 b^{2} \beta^{2} £_{\hat{V}} G_{\alpha}^{i}+2 \beta^{4} \varepsilon £_{\hat{V}} b^{i}-4 b^{i} \beta^{2} b^{2} \varepsilon t_{\circ \circ}\right) \\
& +\alpha^{3}\left(-8 \beta^{3} P y^{i}+8 \beta^{3} £_{\hat{V}} G_{\alpha}^{i}+b^{i} \beta^{3} \varepsilon t_{\circ \circ}\right) \\
& +\alpha^{2}\left(-4 \beta^{4} P y^{i}+4 \beta^{4} £_{\hat{V}} G_{\alpha}^{i}+2 b^{i} \varepsilon \beta^{4} t_{\circ \circ}\right) . \\
= & \alpha^{8}\left(2 y^{i} \varepsilon £_{\hat{V}} b^{2}\right)+\alpha^{7}\left(2 y^{i} b^{4} \varepsilon £_{\hat{V}} \beta+4 b^{2} y^{i} \varepsilon £_{\hat{V}} \beta-2 y^{i} \varepsilon \beta £_{\hat{V}} b^{2}\right) \\
& +\alpha^{6}\left(-2 \beta b^{2} \varepsilon y^{i} £_{\hat{V}} \beta+b^{4} \varepsilon y^{i} t_{\circ \circ}+b^{2} \varepsilon y^{i} t_{\circ \circ}-4 y^{i} \beta \varepsilon £_{\hat{V}} \beta\right) \\
& +\alpha^{5}\left(-b^{4} \beta \varepsilon y^{i} t_{\circ \circ}-4 b^{2} y^{i} \beta^{2} \varepsilon £_{\hat{V}} \beta-3 \beta b^{2} y^{i} \varepsilon t_{\circ \circ}\right) \\
& +\alpha^{4}\left(-b^{2} \beta^{2} \varepsilon y^{i} t_{\circ \circ}+2 y^{i} \beta^{3} \varepsilon £_{\hat{V}} \beta+\beta^{2} y^{i} \varepsilon t_{\circ \circ}\right) \\
& +\alpha^{3}\left(2 \beta^{4} y^{i} \varepsilon £_{\hat{V}} \beta+2 b^{2} \beta^{3} \varepsilon y^{i} t_{\circ \circ}+y^{i} \beta^{3} \varepsilon t_{\circ \circ}\right) \\
& +\alpha^{1}\left(-\beta^{5} \varepsilon y^{i} t_{\circ \circ}\right) .
\end{aligned}
$$

By changing all the terms y to $-y$ in (4.3) we obtain $R(x, y)=K(x, y)=0$. Equation $R(x)=0$ is equivalent to following polynimal equation:

$$
\begin{equation*}
a_{8} \alpha^{8}+a_{7} \alpha^{7}+a_{6} \alpha^{6}+a_{5} \alpha^{5}+a_{4} \alpha^{4}+a_{3} \alpha^{3}+a_{1} \alpha^{1}=0 \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{8}=2 y^{i} \varepsilon £_{\hat{V}} b^{2} \\
& a_{7}=2 y^{i} b^{4} \varepsilon £_{\hat{V}} \beta+4 b^{2} y^{i} \varepsilon £_{\hat{V}} \beta-2 y^{i} \varepsilon \beta £_{\hat{V}} b^{2} \\
& a_{6}=-2 \beta b^{2} \varepsilon y^{i} £_{\hat{V}} \beta+b^{4} \varepsilon y^{i} t_{\circ \circ}+b^{2} \varepsilon y^{i} t_{\circ \circ}-4 y^{i} \beta \varepsilon £_{\hat{V}} \beta \\
& a_{5}=-b^{4} \beta \varepsilon y^{i} t_{\circ \circ}-4 b^{2} y^{i} \beta^{2} \varepsilon £_{\hat{V}} \beta-3 \beta b^{2} y^{i} \varepsilon t_{\circ \circ} \\
& a_{4}=-b^{2} \beta^{2} \varepsilon y^{i} t_{\circ \circ}+2 y^{i} \beta^{3} \varepsilon £_{\hat{V}} \beta+\beta^{2} y^{i} \varepsilon t_{\circ \circ} \\
& a_{3}=2 \beta^{4} y^{i} \varepsilon £_{\hat{V}} \beta+2 b^{2} \beta^{3} \varepsilon y^{i} t_{\circ \circ}+y^{i} \beta^{3} \varepsilon t_{\circ \circ} \\
& a_{1}=-\beta^{5} \varepsilon y^{i} t_{\circ \circ} .
\end{aligned}
$$

From above equation, we can get two fundamental equations

$$
\begin{gather*}
a_{8} \alpha^{8}+a_{6} \alpha^{6}+a_{4} \alpha^{4}=0 \\
a_{7} \alpha^{6}+a_{5} \alpha^{4}+a_{3} \alpha^{2}+a_{1} \alpha^{0}=0 \tag{4.5}
\end{gather*}
$$

From (4.5), we can see that a_{1} has the factor α^{2} and then

$$
t_{\circ \circ}=c^{i}(x) \alpha^{2}
$$

for some scalar function $c^{i}(x)$ on M.
By the equation mentioned above we can conclude that the coefficient a_{4} must be divided by α^{2}, hence there is a class of homogenous of degree one functions $g^{i}=g^{i}(y)$ on M such that,

$$
\begin{equation*}
-b^{2} \varepsilon y^{i} t_{\circ \circ}+2 y^{i} \beta \varepsilon £_{\hat{V}} \beta+y^{i} \varepsilon t_{\circ \circ}=g^{i}(y) \alpha^{2} \tag{4.6}
\end{equation*}
$$

Replacing this quantity $t_{0 \circ}=c^{i}(x) \alpha^{2}$ into (4.6) and taking into account the non-degeneracy of $\varepsilon, \beta \neq 0$ we conclude that

$$
£_{\hat{V}} \beta=0 .
$$

Plugging the quantities $t_{\circ \circ}=c^{i}(x) \alpha^{2}, £_{\hat{V}} \beta=0$ in $R(x)=0$ and sorting again by α, we can get the following equation

$$
\begin{equation*}
m_{8} \alpha^{8}+m_{7} \alpha^{7}+m_{6} \alpha^{6}+m_{5} \alpha^{5}+m_{3} \alpha^{3}=0 \tag{4.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& m_{8}=2 \varepsilon y^{i} £_{\hat{V}} b^{2}+\varepsilon b^{4} y^{i} c^{i}(x)+\varepsilon b^{2} y^{i} c^{i}(x), \\
& m_{7}=-2 y^{i} \beta \varepsilon £_{\hat{V}} b^{2}-\varepsilon \beta y^{i} b^{4} c^{i}(x)-3 \varepsilon \beta y^{i} b^{2} c^{i}(x), \\
& m_{6}=\beta^{2} \varepsilon y^{i} c^{i}(x)-\varepsilon \beta^{2} y^{i} b^{2} c^{i}(x), \\
& m_{5}=\beta^{3} \varepsilon c^{i}(x) y^{i}+2 b^{2} \beta^{3} \varepsilon c^{i}(x) y^{i}, \\
& m_{3}=-\beta^{5} \varepsilon y^{i} c^{i}(x) .
\end{aligned}
$$

From above equation, we can get two fundamental equations

$$
\begin{gather*}
m_{8} \alpha^{6}+m_{6} \alpha^{4}=0, \\
m_{7} \alpha^{4}+m_{5} \alpha^{2}+m_{3} \alpha^{0}=0 \tag{4.8}
\end{gather*}
$$

From (4.8), we see that m_{3} has the factor α^{2} and taking into account the non-degeneracy of $\varepsilon, \beta \neq 0$ we conclude that

$$
c^{i}(x)=0, \quad \text { for any index i. }
$$

Therefore $t_{\circ \circ}=0$.
If we assume that $s_{\circ}^{i} \neq 0$, by (4.3) we can write equation (4.1) as follows

$$
\begin{array}{r}
£_{\hat{V}}\left(G_{\alpha}^{i}+\frac{\alpha^{2}}{\alpha-\beta} s_{\circ}^{i}+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) y^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} e^{s}\right. \\
\left.\quad+\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) b^{i}}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} \alpha\right)=P y^{i} .
\end{array}
$$

Therefore, Equation mentioned above is equivalent to the following equality

$$
\begin{align*}
0= & £_{\hat{V}} G_{\alpha}^{i}-P y^{i}+\left(\frac{t_{\circ \circ}}{\alpha-\beta}-\frac{\alpha t_{\circ \circ}}{2(\alpha-\beta)^{2}}+\frac{\alpha^{2} £_{\hat{V}} \beta}{(\alpha-\beta)^{2}}\right) s_{\circ}^{i} \\
& +\frac{\alpha^{2}}{\alpha-\beta} £_{\hat{V}} s_{\circ}^{i}+\frac{\varepsilon\left(e^{s} y^{i}+\alpha b^{i}\right)}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} £_{\hat{V}}\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right) \\
& +\frac{\varepsilon\left(e^{s} y^{i}+\alpha b^{i}\right)\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right)}{\left(2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}\right)^{2}} £_{\hat{V}}\left(2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}\right) \\
& +\frac{\varepsilon\left(b^{2} \alpha^{3}-\beta^{2} \alpha\right)}{2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}} £_{\hat{V}}\left(e^{s} y^{i}+\alpha b^{i}\right) \tag{4.9}
\end{align*}
$$

By simplifying above equation and multipling both sides of this very equation by $\alpha^{2}(\alpha-\beta)^{2}\left(2 b^{2} \alpha^{2}-2 \beta^{2}-2 \beta \alpha+2 \alpha^{2}\right)^{2}$, we can rewrite (4.9) as follows:

$$
\begin{equation*}
L(x, y) \alpha+D(x, y) e^{s}=0 \tag{4.10}
\end{equation*}
$$

where

$$
\begin{aligned}
L(x, y)= & \alpha^{9}\left(2 b^{4} \varepsilon £_{\hat{V}} b^{i}+2 b^{2} \varepsilon £_{\hat{V}} b^{i}+2 b^{i} \varepsilon £_{\hat{V}} b^{2}\right) \\
& +\alpha^{8}\left(4 £_{\hat{V}} s_{\circ}^{i}+4 b^{4} £_{\hat{V}} s_{\circ}^{i}+8 b^{2} £_{\hat{V}} s_{\circ}^{i}-4 b^{4} \beta \varepsilon £_{\hat{V}} b^{i}\right. \\
& \left.+2 b^{2} b^{i} \varepsilon £_{\hat{V}} \beta-6 b^{2} \beta \varepsilon £_{\hat{V}} b^{i}-6 b^{i} \beta \varepsilon £_{\hat{V}} b^{2}\right) \\
& +\alpha^{7}\left(-4 P y^{i}+4 £_{\hat{V}} G_{\alpha}^{i}-4 b^{4} \beta £_{\hat{V}} s_{\circ}^{i}-2 \beta^{2} \varepsilon £_{\hat{V}} b^{i}\right. \\
& +4 b^{4} s_{\circ}^{i} £_{\hat{V}} \beta-16 b^{2} \beta £_{\hat{V}} s_{\circ}^{i}+8 b^{2} s_{\circ}^{i} £_{\hat{V}} \beta+6 b^{i} \beta^{2} \varepsilon £_{\hat{V}} b^{2} \\
& -4 b^{i} \beta \varepsilon £_{\hat{V}} \beta+2 b^{4} \beta^{2} \varepsilon £_{\hat{V}} b^{i}+2 b^{2} \beta^{2} \varepsilon £_{\hat{V}} b^{i}+2 b^{2} b^{i} \varepsilon t_{\circ \circ} \\
& +2 b^{4} b^{i} \varepsilon t_{\circ \circ}+8 b^{2} £_{\hat{V}} G_{\alpha}^{i}-8 b^{2} P y^{i}+4 b^{4} £_{\hat{V}} G_{\alpha}^{i} \\
& \left.-4 b^{4} P y^{i}+4 s_{\circ}^{i} £_{\hat{V}} \beta-12 \beta £_{\hat{V}} s_{\circ}^{i}-4 b^{2} b^{i} \beta \varepsilon £_{\hat{V}} \beta\right) \\
& +\alpha^{6}\left(6 \beta^{3} \varepsilon £_{\hat{V}} b^{i}+2 b^{4} s_{\circ}^{i} t_{\circ \circ}+4 b^{2} s_{\circ}^{i} t_{\circ \circ}-8 \beta b^{4} £_{\hat{V}} G_{\alpha}^{i}\right. \\
& +8 \beta b^{4} P y^{i}-24 \beta b^{2} £_{\hat{V}} G_{\alpha}^{i}+24 \beta b^{2} P y^{i}-8 \beta s_{\circ}^{i} £_{\hat{V}} \beta \\
& +6 b^{2} \beta^{3} \varepsilon £_{\hat{V}} b^{i}-2 b^{i} \beta^{3} \varepsilon £_{\hat{V}} b^{2}+10 b^{i} \beta^{2} \varepsilon £_{\hat{V}} \beta \\
& -8 b^{2} \beta s_{\circ}^{i} £_{\hat{V}} \beta-16 \beta £_{\hat{V}} G_{\alpha}^{i}+16 \beta P y^{i}+4 \beta^{2} £_{\hat{V}} s_{\circ}^{i} \\
& \left.+2 s_{\circ}^{i} t_{\circ \circ}-4 \beta b^{i} t_{\circ \circ} b^{4} \varepsilon-7 \beta b^{2} \varepsilon b^{i} t_{\circ \circ}+2 b^{i} b^{2} \beta^{2} \varepsilon £_{\hat{V}} \beta\right) \\
& +\alpha^{5}\left(-4 b^{4} \beta^{2} P y^{i}-16 b^{2} \beta^{2} P y^{i}+8 b^{2} \beta^{3} £_{\hat{V}} s_{\circ}^{i}+16 b^{2} \beta^{2} £_{\hat{V}} G_{\alpha}^{i}\right. \\
& -8 s_{\circ}^{i} t_{\circ \circ} \beta+4 b^{4} \beta^{2} £_{\hat{V}} G_{\alpha}^{i}-4 \beta^{2} s_{\circ}^{i} £_{\hat{V}} \beta-4 \beta^{4} \varepsilon £_{\hat{V}} b^{i} \\
& -4 \beta b^{4} s_{\circ}^{i} t_{\circ \circ}-12 \beta b^{2} s_{\circ}^{i} t_{\circ \circ}-8 \beta^{2} b^{2} s_{\circ}^{i} £_{\hat{V}} \beta-8 b^{i} \beta^{3} \varepsilon £_{\hat{V}} \beta \\
& -4 b^{2} \beta^{4} \varepsilon £_{\hat{V}} b^{i}+12 \beta^{3} £_{\hat{V}} s_{\circ}^{i}-16 \beta^{2} P y^{i}+16 \beta^{2} £_{\hat{V}} G_{\alpha}^{i} \\
& \left.+2 b^{i} b^{4} \beta^{2} t_{\circ \circ} \varepsilon+4 b^{i} b^{2} \beta^{2} \varepsilon t_{\circ \circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
+ & \alpha^{4}\left(-2 \beta^{5} \varepsilon £_{\hat{V}} b^{i}+8 b^{2} \beta^{3} £_{\hat{V}} G_{\alpha}^{i}-8 b^{2} \beta^{3} P y^{i}+8 \beta^{3} s_{\circ}^{i} £_{\hat{V}} \beta\right. \\
+ & 6 \beta^{2} t_{\circ \circ} s_{\circ}^{i}+5 b^{i} b^{2} \beta^{3} \varepsilon t_{\circ \circ}-8 \beta^{3} P y^{i}-4 \beta^{4} £_{\hat{V}} s_{\circ}^{i}+8 \beta^{3} £_{\hat{V}} G_{\alpha}^{i} \\
+ & \left.\beta^{3} b^{i} \varepsilon t_{\circ \circ}+4 \beta^{2} b^{2} s_{\circ}^{i} t_{\circ \circ}+2 \beta^{4} b^{i} \varepsilon £_{\hat{V}} \beta\right) \\
+ & \alpha^{3}\left(2 \beta^{6} \varepsilon £_{\hat{V}} b^{i}+8 b^{2} \beta^{4} P y^{i}-8 b^{2} \beta^{4} £_{\hat{V}} G_{\alpha}^{i}+16 \beta^{4} P y^{i}\right. \\
+ & \left.8 s_{\circ}^{i} t_{\circ \circ} b^{2} \beta^{3}-4 b^{i} t_{\circ \circ} b^{2} \beta^{4} \varepsilon\right) \\
+ & \alpha^{2}\left(-6 \beta^{4} s_{\circ}^{i} t_{\circ \circ}-3 \beta^{5} b^{i} t_{\circ \circ} \varepsilon\right) \\
+ & \alpha^{1}\left(-4 \beta^{6} P y^{i}+4 \beta^{6} £_{\hat{V}} G_{\alpha}^{i}-4 \beta^{5} s_{\circ}^{i} t_{\circ \circ}+2 \beta^{6} b^{i} t_{\circ \circ} \varepsilon\right) . \\
D(x, y)= & \alpha^{9}\left(2 y^{i} \varepsilon £_{\hat{V}} b^{2}\right) \\
& +\alpha^{8}\left(-6 \beta y^{i} \varepsilon £_{\hat{V}} b^{2}+2 \varepsilon b^{4} y^{i} £_{\hat{V}} \beta+4 b^{2} y^{i} \varepsilon £_{\hat{V}} \beta\right) \\
& +\alpha^{7}\left(-10 b^{2} \beta \varepsilon y^{i} £_{\hat{V}} \beta-4 b^{4} \beta \varepsilon y^{i} £_{\hat{V}} \beta+b^{4} y^{i} \varepsilon t_{\circ \circ}+b^{2} y^{i} \varepsilon t_{\circ \circ}\right. \\
& \left.-7 \beta b^{2} \varepsilon b^{i} t_{\circ \circ}+2 b^{i} b^{2} \beta^{2} \varepsilon £_{\hat{V}} \beta-4 \beta \varepsilon y^{i} £_{\hat{V}} \beta+6 \beta^{2} \varepsilon y^{i} £_{\hat{V}} b^{2}\right) \\
& +\alpha^{6}\left(4 b^{2} \beta^{2} y^{i} \varepsilon £_{\hat{V}} \beta-5 b^{2} \beta \varepsilon y^{i} t_{\circ \circ}-3 b^{4} \beta \varepsilon y^{i} t_{\circ \circ}+2 b^{4} \beta^{2} \varepsilon y^{i} £_{\hat{V}} \beta\right. \\
& \left.-2 \beta^{3} \varepsilon y^{i} £_{\hat{V}} b^{2}+8 \beta^{2} \varepsilon y^{i} £_{\hat{V}} \beta\right) \\
& +\alpha^{5}\left(-2 \beta^{3} \varepsilon y^{i} £_{\hat{V}} \beta+\beta^{2} \varepsilon y^{i} t_{\circ \circ}+3 b^{4} \beta^{2} y^{i} \varepsilon t_{\circ \circ}+6 b^{2} \beta^{3} \varepsilon y^{i} £_{\hat{V}} \beta\right. \\
& \left.+6 y^{i} b^{2} \beta^{3} \varepsilon t_{\circ \circ}\right) \\
& +\alpha^{4}\left(b^{2} \beta^{3} y^{i} \varepsilon t_{\circ \circ}-b^{4} \beta^{3} \varepsilon y^{i} t_{\circ \circ}-4 b^{2} \beta^{4} y^{i} \varepsilon £_{\hat{V}} \beta-\varepsilon \beta^{3} y^{i} t_{\circ \circ}\right. \\
& \left.-2 \beta^{4} y^{i} \varepsilon £_{\hat{V}} \beta\right) \\
& +\alpha^{3}\left(-5 \beta^{4} b^{2} \varepsilon y^{i} t_{\circ \circ}-\beta^{4} \varepsilon y^{i} t_{\circ \circ}-2 y^{i} \beta^{5} \varepsilon £_{\hat{V}} \beta\right) \\
& +\alpha^{2}\left(2 \beta^{5} b^{2} \varepsilon y^{i} t_{\circ \circ}+2 \beta^{6} \varepsilon y^{i} £_{\hat{V}} \beta\right) \\
& +\alpha^{1}\left(2 \beta^{6} \varepsilon y^{i} t_{\circ \circ}\right) \\
& +\alpha^{0}\left(-\beta^{7} \varepsilon y^{i} t_{\circ \circ}\right) .
\end{aligned}
$$

By changing all the terms y to $-y$ in (4.10) we obtain $L(x, y)=D(x, y)=0$. From equation $D(x)=0$, we can get two fundamental equations

$$
\begin{align*}
& a_{9} \alpha^{8}+a_{7} \alpha^{6}+a_{5} \alpha^{4}+a_{3} \alpha^{2}+a_{1} \alpha^{0}=0 \\
& a_{8} \alpha^{8}+a_{6} \alpha^{6}+a_{4} \alpha^{4}+a_{2} \alpha^{2}+a_{0} \alpha^{0}=0 \tag{4.11}
\end{align*}
$$

where

$$
\begin{aligned}
a_{9}= & 2 y^{i} \varepsilon £_{\hat{V}} b^{2}, \\
a_{8}= & -6 \beta y^{i} \varepsilon £_{\hat{V}} b^{2}+2 \varepsilon b^{4} y^{i} £_{\hat{V}} \beta+4 b^{2} y^{i} \varepsilon £_{\hat{V}} \beta \\
a_{7}= & -10 b^{2} \beta \varepsilon y^{i} £_{\hat{V}} \beta-4 b^{4} \beta \varepsilon y^{i} £_{\hat{V}} \beta+b^{4} y^{i} \varepsilon t_{\circ \circ}+b^{2} y^{i} \varepsilon t_{\circ \circ} \\
& 7 \beta b^{2} \varepsilon b^{i} t_{\circ \circ}+2 b^{i} b^{2} \beta^{2} \varepsilon £_{\hat{V}} \beta-4 \beta \varepsilon y^{i} £_{\hat{V}} \beta+6 \beta^{2} \varepsilon y^{i} £_{\hat{V}} b^{2}, \\
a_{6}= & 4 b^{2} \beta^{2} y^{i} \varepsilon £_{\hat{V}} \beta-5 b^{2} \beta \varepsilon y^{i} t_{\circ \circ}-3 b^{4} \beta \varepsilon y^{i} t_{\circ \circ}+2 b^{4} \beta^{2} \varepsilon y^{i} £_{\hat{V}} \beta, \\
& 2 \beta^{3} \varepsilon y^{i} £_{\hat{V}} b^{2}+8 \beta^{2} \varepsilon y^{i} £_{\hat{V}} \beta
\end{aligned}
$$

$$
\begin{aligned}
a_{5} & =-2 \beta^{3} \varepsilon y^{i} £_{\hat{V}} \beta+\beta^{2} \varepsilon y^{i} t_{\circ \circ}+3 b^{4} \beta^{2} y^{i} \varepsilon t_{\circ \circ}+6 b^{2} \beta^{3} \varepsilon y^{i} £_{\hat{V}} \beta \\
& +6 y^{i} b^{2} \beta^{3} \varepsilon t_{\circ \circ} \\
a_{4} & =b^{2} \beta^{3} y^{i} \varepsilon t_{\circ \circ}-b^{4} \beta^{3} \varepsilon y^{i} t_{\circ \circ}-4 b^{2} \beta^{4} y^{i} \varepsilon £_{\hat{V}} \beta-\varepsilon \beta^{3} y^{i} t_{\circ \circ}-2 \beta^{4} y^{i} \varepsilon £_{\hat{V}} \beta, \\
a_{3} & =-5 \beta^{4} b^{2} \varepsilon y^{i} t_{\circ \circ}-\beta^{4} \varepsilon y^{i} t_{\circ \circ}-2 y^{i} \beta^{5} \varepsilon £_{\hat{V}} \beta, \\
a_{2} & =2 \beta^{5} b^{2} \varepsilon y^{i} t_{\circ \circ}+2 \beta^{6} \varepsilon y^{i} £_{\hat{V}} \beta, \\
a_{1} & =2 \beta^{6} \varepsilon y^{i} t_{\circ \circ}, \\
a_{0} & =-\beta^{7} \varepsilon y^{i} t_{\circ \circ} .
\end{aligned}
$$

From (4.11), we see that a_{0} has the factor α^{2} and then $t_{\circ \circ}=c^{i}(x) \alpha^{2}$ for some scalar function $c^{i}(x)$ on M.
Replacing this quantity $t_{\circ \circ}=c^{i}(x) \alpha^{2}$ into (4.9) and sorting sorting again by α, we have equation

$$
\begin{equation*}
\bar{L}(x, y) \alpha+\bar{D}(x, y) e^{s}=0 \tag{4.12}
\end{equation*}
$$

By similar computations we can conclude $\bar{L}(x, y)=\bar{D}(x, y)=0$. Equation $\bar{D}(x, y)=0$ is as

$$
\begin{equation*}
\overline{m_{9}} \alpha^{9}+\overline{m_{8}} \alpha^{8}+\overline{m_{7}} \alpha^{7}+\overline{m_{6}} \alpha^{6}+\overline{m_{5}} \alpha^{5}+\overline{m_{4}} \alpha^{4}+\overline{m_{3}} \alpha^{3}+\overline{m_{2}} \alpha^{2}=0 \tag{4.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \overline{m_{3}}=-2 \beta^{5} \varepsilon y^{i} £_{\hat{V}} \beta+2 \beta^{6} \varepsilon y^{i} c^{i}(x) \\
& \overline{m_{2}}=+2 \beta^{6} \varepsilon y^{i} £_{\hat{V}} \beta-\beta^{7} \varepsilon y^{i} c^{i}(x)
\end{aligned}
$$

From (4.13), we have two fundamental equation

$$
\begin{aligned}
& \overline{m_{9}} \alpha^{6}+\overline{m_{7}} \alpha^{4}+\overline{m_{5}} \alpha^{2}+\overline{m_{3}} \alpha^{0}=0 \\
& \overline{m_{8}} \alpha^{6}+\overline{m_{6}} \alpha^{4}+\overline{m_{4}} \alpha^{2}+\overline{m_{2}} \alpha^{0}=0 .
\end{aligned}
$$

By the equations mentioned above we conclude that $\overline{m_{2}}, \overline{m_{3}}$ must be divided by α^{2}, therefore there are two scalar function $q^{i}(x), g^{i}(x)$ on M where

$$
\begin{gather*}
-2 \varepsilon y^{i} £_{\hat{V}} \beta+2 \beta \varepsilon y^{i} c^{i}(x)=q^{i}(x) \alpha^{2} \tag{4.14}\\
2 \varepsilon y^{i} £_{\hat{V}} \beta-\beta \varepsilon y^{i} c^{i}(x)=g^{i}(x) \alpha^{2} . \tag{4.15}
\end{gather*}
$$

Let us compute the terms given by (4.14) and (4.15),

$$
\begin{equation*}
\beta \varepsilon y^{i} c^{i}(x)=\left(q^{i}(x)+g^{i}(x)\right) \alpha^{2} . \tag{4.16}
\end{equation*}
$$

Taking into account the non-degeneracy of $\varepsilon, \beta \neq 0$ yields

$$
c^{i}(x)=0,
$$

therefore

$$
t_{\mathrm{o} \circ}=0
$$

Plugging $c^{i}(x)=0$ in (4.14) follows that

$$
£_{\hat{V}} \beta=0 .
$$

Now, let us assume β satisfies

$$
r_{\circ \circ}=0, \quad s_{\circ}=0
$$

In this case, $\mathbf{S}=0$. Substituting $r_{\circ \circ}=0$ and $s_{\circ}=0$ in (2.1), the spray coefficients of F can be calculated by $G^{i}=G_{\alpha}^{i}+\alpha Q s_{\circ}^{i}$, i.e.

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\frac{\alpha^{2}}{\alpha-\beta} s_{\circ}^{i} \tag{4.17}
\end{equation*}
$$

Suppose that $s_{\circ}^{i}=0$, so we observe

$$
G^{i}=G_{\alpha}^{i}
$$

In this case one can see that the projective algebra $p(M, F)$ of F is coincides with the projective algebra $p(M, \alpha)$ of α and this proves (a).

If $s_{\circ}^{i} \neq 0$ and V be a projective vector field on (M, F). From remark 3.1, V is a special projective vector field on M, so

$$
£_{\hat{V}} G^{i}=P y^{i}
$$

where $P(x, y)=P_{k}(x) y^{k}$. From (4.17)

$$
£_{\hat{V}} G^{i}=£_{\hat{V}}\left(G_{\alpha}^{i}+\frac{\alpha^{2}}{\alpha-\beta} s_{\circ}^{i}\right)=£_{\hat{V}} G_{\alpha}^{i}+£_{\hat{V}}\left(\frac{\alpha^{2}}{\alpha-\beta} s_{\circ}^{i}\right)=P y^{i} .
$$

Therefore

$$
\begin{equation*}
£_{\hat{V}} G^{i}=£_{\hat{V}} G_{\alpha}^{i}+\frac{t_{\circ \circ}}{\alpha-\beta} s_{\circ}^{i}-\frac{1}{2} \frac{\alpha t_{\circ \circ}}{(\alpha-\beta)^{2}} s_{\circ}^{i}+\frac{\alpha^{2} £_{\hat{V}} \beta}{(\alpha-\beta)^{2}} s_{\circ}^{i}+\frac{\alpha^{2}}{\alpha-\beta} £_{\hat{V}} s_{\circ}^{i} . \tag{4.18}
\end{equation*}
$$

By replacing y^{i} in (4.18) with $-y^{i}$ we have:

$$
\begin{equation*}
£_{\hat{V}} G^{i}=£_{\hat{V}} G_{\alpha}^{i}-\frac{t_{\circ \circ}}{\alpha+\beta} s_{\circ}^{i}+\frac{1}{2} \frac{\alpha t_{\circ \circ}}{(\alpha+\beta)^{2}} s_{\circ}^{i}+\frac{\alpha^{2} £_{\hat{V}} \beta}{(\alpha+\beta)^{2}} s_{\circ}^{i}-\frac{\alpha^{2}}{\alpha+\beta} £_{\hat{V}} s_{\circ}^{i} \tag{4.19}
\end{equation*}
$$

Let us compute the terms given by (4.18), (4.19)

$$
\begin{equation*}
\alpha t_{\circ \circ} s_{\circ}^{i}\left(\alpha^{2}-3 \beta^{2}\right)+4 \alpha^{3} \beta s_{\circ}^{i} £_{\hat{V}} \beta+2 \alpha^{3} £_{\hat{V}} s_{\circ}^{i}\left(\alpha^{2}-\beta^{2}\right)=0 . \tag{4.20}
\end{equation*}
$$

Eq. (4.20) is equivalent to following polynimal equation:

$$
\begin{equation*}
a_{1}+\alpha^{2} a_{3}+\alpha^{4} a_{5}=0 \tag{4.21}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{1}=-3 \beta^{2} s_{\circ}^{i} t_{\circ \circ}, \\
& a_{3}=s_{\circ}^{i} t_{\circ \circ}-2 \beta^{2} £_{\hat{V}} s_{\circ}^{i}+4 \beta s_{\circ}^{i} £_{\hat{V}} \beta, \\
& a_{5}=2 £_{\hat{V}} s_{\circ}^{i} .
\end{aligned}
$$

we see that a_{1} has the factor α^{2} and then

$$
t_{\circ \circ}=c^{i}(x) \alpha^{2}
$$

for some scalar function $c^{i}(x)$ on M. Plugging it in (4.21), changes it into the following equation

$$
\begin{equation*}
\alpha^{2} a_{5}+a_{3}+a_{1}=0 \tag{4.22}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{5}=2 £_{\hat{V}} s_{\circ}^{i}, \\
& a_{3}=s_{\circ}^{i} c^{i}(x) \alpha^{2}-2 \beta^{2} £_{\hat{V}} s_{\circ}^{i}+4 \beta s_{\circ}^{i} £_{\hat{V}} \beta, \\
& a_{1}=-3 \beta^{2} s_{\circ}^{i} c^{i}(x) .
\end{aligned}
$$

From which it follows that α^{2} must divide $a_{1}+a_{3}$, hence there is a class of functions $\mu^{i}=\mu^{i}(x)$ on M such that,

$$
\begin{equation*}
-3 \beta^{2} s_{\circ}^{i} c^{i}(x)+s_{\circ}^{i} c^{i}(x) \alpha^{2}-2 \beta^{2} £_{\hat{V}} s_{\circ}^{i}+4 \beta s_{\circ}^{i} £_{\hat{V}} \beta=\mu^{i}(x) \alpha^{2} \tag{4.23}
\end{equation*}
$$

Convecting the two sides of (4.23) with y_{i} and taking the facts that $y_{i}=a_{i j} y^{j}$, $y_{i} s_{\circ}^{i}=0$ and $£_{\hat{V}} y_{i}=0$, Eq.(4.23) reads as $\mu^{i}(x) y_{i} \alpha^{2}=0$.

After a derivation with respect to y^{k}, we have

$$
2 \mu^{i}(x) a_{i k}=0, \quad \mu^{i}=0
$$

Plugging $\mu^{i}=0$ in (4.23) and then (4.22) follows that

$$
£_{\hat{V}} s_{\circ}^{i}=0
$$

and thus,

$$
\begin{equation*}
-3 \beta^{2} s_{\circ}^{i} c^{i}(x)+s_{\circ}^{i} c^{i}(x) \alpha^{2}+4 \beta s_{\circ}^{i} £_{\hat{V}} \beta=0 \tag{4.24}
\end{equation*}
$$

From $s_{\circ}^{i} \neq 0$ we get:

$$
-3 \beta^{2} c^{i}(x)+c^{i}(x) \alpha^{2}+4 \beta £_{\hat{V}} \beta=0
$$

Taking into account the non-degeneracy of $\alpha^{2}, \beta \neq 0$ yields $c^{i}(x)=0, £_{\hat{V}} \beta=0$ and completes the proof.

References

1. H. Akbar-Zadeh, Champs de vecteurs projectifs sur le fibré unitaire, J. Math. Pure Appl. 65 (1986), 47-79.
2. H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionelles constantes, Acad. Roy. Belgian Bull. Cl. Sci. 74 (5) (1988), 281-322.
3. S. Bàcsò, X. Cheng and Z.Shen, Curvature properties of (α, β)-metrics, Advance. Stud. Pure. Math. 48(2007), 73-110.
4. M. Rafie-Rad and B. Rezaei, On the projective algebra of some (α, β)-metrics of isotropic S-curvature, Int. J. Geom. Methods Mod. Phys. 10 (2013) 048, 11 pp.
5. Z. Shen, Differential Geometry of Spray and Finsler Spaces (Kluwer Academic Publishers, 2001).
6. X. Mo, On the non-Riemannian quantity H of a Finsler metric, Diff. Geom. Appl. 27 (2009), 7-14.
7. B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata 131 (2008), 87-98.
8. M. Rafie-Rad, Some new characterizations of projective Randers metrics with constant S-curvature, J. Geom. Phys. 9 (4) (2012), 272-278.
9. K. Yano, The Theory of Lie Derivatives and Its Applications (North Holland, Amsterdam, 1957).
10. S. Masoumi, Projective vector fields on special (α, β)-metric, J. Finsler Geom. Appl. 2 (2020), 83-93.

Received: 08.01.2024
Accepted: 05.03.2024

[^0]: * Corresponding Author

 AMS Mathematics Subject Classification: 53C60, 53C25

