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Department of Industrial Engineering, Antalya Bilim University
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Abstract. General (α, β)-metrics form a rich and important class of Finsler

metrics. Many well-known Finsler metrics of constant flag curvature can be lo-

cally expressed as a general (α, β) metrics. In this paper, we study the general

(α, β)-metrics with constant Ricci curvature (tensor) and constant flag curva-

ture. Moreover, we study general (α, β) metrics with vanishing χ-curvature.
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1. Introduction

One of important problems in Finsler geometry involves studying and char-

acterizing Finsler metrics with constant flag curvature and constant Ricci cur-

vature (tensor). Let R i
j kl denote the Riemann curvature tensor of the Berwald

connection and Rik := R i
j kly

jyl. A Finsler metric F is said to be of constant

flag curvature if

Rik = κ
{
F 2δik − gklylyi

}
, (1.1)

where κ is a real constant.

General (α, β)-Finsler metrics can be expressed in the following form

F = αφ
(
b2,

β

α

)
, (1.2)
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where α is a Riemannian metric, β is a 1-form, b := ‖ β ‖α and φ(b2, s) is a

smooth function. The notion of general (α, β)-metrics is proposed by C. Yu as

a generalization of Randers metrics from the geometric point of view, [1].

In this paper, we assume that the Riemannian metric α is an Einstein metric

with Ricci constant µ and β is a 1-form satisfying

αRic = (n− 1)µα2, bi|j = caij , (1.3)

where c := c(x) is a scalar function, c2 = K − µb2.

The condition (1.3) on β is indeed natural. Note that if α and β satisfy (1.3)

with c = 0, then β is parallel with respect to α.

Recently, Q. Xia, [2] and authors separately found five equations character-

izing general (α, β)-metrics of Riemannian curvature tensor Rij given by

Rij = R1α
2δij +R2yjy

i +R3αbjy
i +R4αyjb

i +R5α
2bjb

i, (1.4)

where the following five equations reduced to four equations in [2] later,

R1 := µ(1 + sψ) + c2
{
ψ2 − 2sψ1 − ψ2 + 2ϕ(1 + sψ + (b2 − s2)ψ2)

}
, (1.5)

R2 := −µ
{

1− s(ψ − sψ2)
}

+ c2
{
ψ2 + sψ22 − ψ(ψ − sψ2)− 2s(ψ1 − sψ12)

−(2ϕ− sϕ2)[1 + sψ + (b2 − s2)ψ2]− 2sϕ[ψ − sψ2 + (b2 − s2)ψ22]
}
,

(1.6)

R3 := −µ(2ψ − sψ2) + c2
{

2(2ψ1 − sψ12)− ψψ2 − ψ22 + 2ϕ[ψ − sψ2

+(b2 − s2)ψ22]− ϕ2[1 + sψ + (b2 − s2)ψ2]
}
, (1.7)

R4 := µs(2ϕ− sϕ2)− c2s
{

2(2ϕ1 − sϕ12)− ϕ22 + 2ϕ(2ϕ− sϕ2)

+(b2 − s2)(2ϕϕ22 − ϕ2
2)
}
, (1.8)

R5 := −µ(2ϕ− sϕ2) + c2
{

2(2ϕ1 − sϕ12)− ϕ22 + 2ϕ(2ϕ− sϕ2)

+(b2 − s2)(2ϕϕ22 − ϕ2
2)
}
, (1.9)

and

ϕ =
φ22 − 2(φ1 − sφ12)

2(φ− sφ2 + (b2 − s2)φ22)
,

ψ =
φ2 + 2sφ1

2φ
− ϕ

φ

(
sφ+ (b2 − s2)φ2

)
.

Then by (1.5)-(1.9), one can obtain the following useful relations between

R1, R2, R3, R4 and R5:

R4 = −sR5, (1.10)

0 = R1 +R2 + sR3. (1.11)
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Therefore, also by Q. Xia, [2], we have

Rij = R1(α2δij − yjyi) +R3(αbj − syj)yi +R5(αbj − syj)αbi (1.12)

where R1, R3, and R5 are given by (1.5), (1.7) and (1.9), respectively.

There is a notion of Ricci curvature tensor Ricij introduced in [3].

Ricij :=
1

2

{
R m
i mj +R m

j mi

}
, (1.13)

and we note that

Ric = Ricijy
iyj . (1.14)

A Finsler metric F is said to be of constant Ricci curvature if for a constant

κ we have

Ric = (n− 1)κF 2.

where the Ricci curvature Ric is defined as Ric = Rmm. We have the following

theorem.

Theorem 1.1. Let F = αφ(b2, β/α) be a general (α, β)-metric on a manifold

M with dimension n ≥ 3 where α, β satisfy (1.3). Then for a constant κ we

have Ric = (n− 1)κF 2 if and only if φ satisfies the PDE below:

(n− 1)κφ2 = (n− 1)R1 + (b2 − s2)R5 (1.15)

It is an interesting problem to see the difference between the two notions

defined above, namely Ric = (n− 1)κF 2 versus Ricij = (n− 1)κgij . We shall

discuss this problem via (α, β) Finsler metrics on a manifold M with n ≥ 3,

where α, β satisfy the conditions in (1.3). The equality in (1.14) shows that

Ricij = (n− 1)κgij implies that Ric = (n− 1)κF 2, where κ is a constant.

Theorem 1.2. Let F = αφ(b2, βα ) be a general (α, β)-metric on a manifold

M with dimension n ≥ 3 where α, β satisfy conditions in (1.3). Then for a

constant κ we have Ricij = κgij if and only if

(n− 1)κφ2 = (n− 1)R1 + (b2 − s2)R5, and (1.16)

−2c2(b2 − s2)(2ϕ− γ)

c2
=
(1− (b2 − s2)

s

)
Ω2 + 2Ω1 +

(2c2ϕ− µ)

c2
Ω. (1.17)

where

Ξ = Ξ(r, s) = ψ − sψ2

Υ = Υ(r, s) = ϕ2 − sϕ22

Ω = (n+ 1)Ξ + (b2 − s2)Υ

F is of scalar flag curvature if and only if for τjy
j = R we have

Rij = Rδij − τjyi. (1.18)

Thus it is easy to see from (1.12) that the general (α, β) metric satisfying (1.3)

is of scalar flag curvature if and only if R5 = 0 as stated in the next theorem.
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Theorem 1.3. Let F = αφ(b2, βα ) be a general (α, β)-metric on a manifold

M with dimension n ≥ 3 where α, β satisfy conditions in (1.3). Then F is of

scalar flag curvature if and only if R5 = 0. In that case, we have

κ =
R1

φ2
= −R3

φ2
.

Note that, for a general (α, β)-metric on a manifold M with dimension n ≥ 3

where α, β satisfy conditions in (1.3) with R5 = 0, Ric = (n − 1)κF 2 if and

only if Ricij = (n− 1)κgij if and only if the flag curvature κ is a constant.

Theorem 1.4. Let F = αφ(b2, β/α) be a general (α, β)-metric on an n-

dimensional manifold M with n ≥ 3, where α, β satisfy conditions in (1.3).

Then for a constant κ we have F is of constant flag curvature if and only if

R1 = κφ2, R5 = 0. (1.19)

We first give an example below. In example we have the general (α, β)-

metric on Sn which can be seen as spherically symmetric metric on Sn. This

metric can also be viewed as spherically symmetric metric on Rn, but this is

indeed globally defined on the whole Sn. In this example, we express the Bryant

metrics on Sn as a general (α, β)-metrics with constant curvature κ = 1.

Example 1.5. Let f : Sn → R be an eigenfunction and α be a Riemannian

metric of constant curvature µ = 1, and β = ε df where fij = −aij f , then

bij = caij where c2 = K − b2. That is,

K = ε2,

b2 = ε2|∇f |2, (1.20)

c2 = ε2(1− |∇f |2).

Next, we use the special coordinate functions f(p) := xn+1 at p := ψ(x), x :=

(xi) ∈ Rn. By the standard projective pull-back from Sn to Rn, one can see

that the general (α, β)-metric on Sn is a spherically symmetric metric on Rn.

With the given details above, the Bryant metric expressed on Rn

F =

√√
A+B

2E
+
(U
E

)2
+
V

E
(1.21)

can be expressed in this simple special general (α, β)-metric form given below:

F := αφ(b2, s),

φ(b2, s) =
1

ε

{√
Ã

2Ẽ
+

B̃

Ẽ2
− C̃

Ẽ

}
, (1.22)

where Ã, B̃, C̃, and Ẽ are all functions of b2 and s.
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Ã =
√

2(cos(2α)− 1)(b2 − s2)(ε2 − (b2 − s2)) + ε4

+(cos(2α)− 1)(ε2 − (b2 − s2)) + ε2,

B̃ = (1− ε−2b2) sin2(2α)s2,

C̃ = (1− ε−2b2)−1/2s
[

cos(2α)(1− ε−2b2) + ε−2b2
]
,

Ẽ = (ε−2b2)2 + 2 cos(2α)ε−2b2(1− ε−2b2) + (1− ε−2b2)2.

(1.23)

We show that these two conditions

R1 = κφ2, R5 = 0. (1.24)

hold using equations in (1.5), (1.9), (1.22), and (1.23) on Maple. Hence, in

this example the general (α, β)-metric F is of constant curvature.

2. Preliminaries

Let F = F (x, y) be a Finsler metric on n-dimensional smooth manifold M

and (x, y) = (xi, yi) be the local coordinates on the tangent bundle TM . Let

gy = gij(x, y)dxi ⊗ dxj be a fundamental tensor, where gij = 1
2 [F 2]yiyj , and

Gi =
1

4
gil
{

[F 2]xmyly
m − [F 2]xl

}
are the spray coefficients of F , and (gij) = (gij)

−1. For any x ∈ M and

y ∈ TxM \0, the Riemannian curvature Ry = Rik(x, y) ∂
∂xi ⊗dxk of F is defined

by

Rik = 2
∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm

∂2Gi

∂ym∂yk
− ∂Gi

∂ym
∂Gm

∂yk
. (2.1)

κ(P, y) given below is called the flag curvature of F ,

κ(P, y) =
gy(Ry(u), u)

gy(y, y)gy(u, v)− [gy(u, y)]2
(2.2)

where P =span{y, u} ⊂ TxM . If F is a Riemannian metric, then κ(P, y) =

κ(P ) is independent of y ∈ P and it is just the sectional curvature of the

Riemannian metric. F is said to be of scalar flag curvature κ if κ = κ(x, y)

is independent of P for any y ∈ TxM . In particular, if κ(x, y) is a constant,

F is said to be of constant flag curvature. It is known that F is of scalar flag

curvature if and only if, in the standard local coordinate system,

Rik = κ(x, y)
{
F 2δik − FFykyi

}
. (2.3)
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Let φ = φ(b2, s) be a smooth function defined on the domain s ≤ b < b0 for

some positive number b0 (it might be infinity). We define the general (α, β)-

metric

F = αφ(b2,
β

α
)

where α is a Riemannian metric and β is a 1-form with b :=‖ β ‖α< b0 on a

manifold M . It is easy to show that F = αφ(b2, βα ) is a regular metric for any

α and β with b :=‖ β ‖α< b0 if and only if φ(b2, s) satisfies the inequality

φ− sφ > 0, φ− sφ2 + (b2 − s2)φ22 > 0, |s| ≤ b < b0 (2.4)

for n ≥ 3, where φ1 and φ2 are the derivatives of φ with respect to b2 and s

respectively, [1]. We let α =
√
aij(x)yiyj , and β = bi(x)yi. We also have that

bi|j denotes the coefficients of the covariant derivative of β with respect to α,

and

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i), r00 = rijy

iyj , si0 = aijsjky
k,

ri = bjrji, si = bjsji, r0 = riy
i, s0 = siy

i, ri = aijrj , s
i = aijrj , r = biri.

It is easy to see that β is closed if and only if sij = 0.

The spray coefficients of Gi of a general (α, β)-metric F = αφ(b2, β α) are

related to the spray coefficients αGi of α, [1]. This relationship is given by

Gi = αGi + αQsi0 +
{

Θ(−2αQs0 + r00 + 2α2Rr) + αΩ(r0 + s0)
}yi
α

+
{

Ψ(−2αQs0 + r00 + 2α2Rr) + αΠ(r0 + s0)
}
bi

−α2R(ri + si), (2.5)

where

Q =
φ2

φ− sφ2
, R =

φ1
φ− sφ2

,

Θ =
(φ− sφ2)φ2 − sφφ22

2φ(φ− sφ2 + (b2 − s2)φ22)
,

Ψ =
φ22

2(φ− sφ2 + (b2 − s2)φ22)
, (2.6)

Π =
(φ− sφ2)φ12 − sφ1φ22

(φ− sφ2)(φ− sφ2 + (b2 − s2)φ22)
,

Ω =
2φ1
φ
− sφ+ (b2 − s2)φ2

φ
Π.
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We denote Gi = αGi +Hi, where

Hi = αQsi0 − α2R(ri + si) +
{

Θ(r00 − 2αQs0 + 2α2Rr) + αΩ(r0 + s0)
}yi
α

+
{

Ψ(−2αQs0 + r00 + 2α2Rr) + αΠ(r0 + s0)
}
bi, (2.7)

Then, the flag curvature tensor and the Ricci curvature are related to that α

and Hi. The relationships are given below

Rij = αRij + 2Hi
|j − y

kHi
|k·j + 2HkHi

· k·j −Hi
· kH

k
·j , (2.8)

and

Ric = αRic+ 2Hi
|i − y

jHi
|j·i + 2HjHi

· j· i −Hi
· jH

j
·i. (2.9)

Suppose that β satisfies (1.3), then we have

si0 = 0, s0 = 0, r00 = cα2, r0 = cβ, r = cb2.

By (2.7), we have

Gi = αGi + cα(ψyi + αϕbi), (2.10)

where

ϕ(b2, s) := Ψ(1 + 2Rb2) + sΠ−R,
ψ(b2, s) := Θ(1 + 2Rb2) + sΩ. (2.11)

The expanded form of Gi is given below:

Gi = αGi + cα
{

Θ(1 + 2Rb2) + sΩ
}
yi

+ cα2
{

Ψ(1 + 2Rb2) + sΠ−R
}
bi. (2.12)

The equations in (2.11) can be expressed in terms of φ as follows.

ϕ =
φ22 − 2(φ1 − sφ12)

2(φ− sφ2 + (b2 − s2)φ22)
,

ψ =
φ2 + 2sφ1

2φ
− ϕ

φ

(
sφ+ (b2 − s2)φ2

)
. (2.13)

The non-Riemannian quantity, χ = χidx
i, is an important quantity in Fisler

geometry which could be expressed in terms of the S-curvature, [5],

χi =
1

2

{
S· i|my

m − S|i
}
. (2.14)

Here S denotes the S- curvature of F with respect to the Busemann-Hausdorff

volume form on M , and “·” and “|” denote the vertical and horizontal covariant

derivative with respect to the Chern connection, respectively.
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Let F be a Finsler metric on a manifold M and Gi = Gi(x, y) be the spray

coefficients of F . We recall

Π =
∂Gm

∂ym
.

Note that Π is a local scalar function which depends on the choice of a particular

coordinate system. When F is Berwald metric, namely, Gi = 1
2Γijk(x)yjyk are

quadratic in y, then Π = Γmjmy
j is a local 1-form. Let dVF = σF dx

1...dxn

be a Busemann-Hausdorff volume form of F on M . Then, the S-curvature of

(F, dV ) is given by

S = Π− ym ∂

∂xm
(lnσF ). (2.15)

By (2.14), one can express χi by

χi =
1

2

{
Πyixmym −Πxi − 2ΠyiymG

m
}
. (2.16)

The χ does not depend on dVF directly. Moreover, the χ-curvature is related

to the Riemannian curvature Rik = R i
j kly

jyl as given below;

χi = −1

6

{
2Rmi·m +Rmm·i

}
,

where “·” denotes the vertical covariant derivative. The importance of this

χ-curvature lies in the following Lemma, [5].

Lemma 2.1. For a Finsler metric of scalar flag curvature on an n-dimensional

manifold M , we have χi = 0 if and only if the flag curvature is isotropic

(constant if n ≥ 3).

In the following lemma, we obtain a formula for χi for a general (α, β)-

metric F = αφ(b2, s) satisfying (1.3). In the literature review one can see that

χi has been studied by some authors, [6, 7]. It has obviously seen that the

idea, obtained equation form and different proof techniques have been used.

Lemma 2.2. Let F = αφ(b2, s), s = β/α, be a general (α, β)-metric on an

n-dimensional manifold M with n ≥ 3, where α, β satisfy (1.3). Then the

curvature χi is given in the following formula.

χi =
1

2

[
(n+ 1)R6 + (b2 − s2)[R5]s

]
(αbi − syi), (2.17)

where R6 =
1

3

{
[R1]s + 2R3

}
.

Proof. Equation (2.10) can be rewritten as

Gi = αGi +Hi,

where

Hi = cα
(
ψyi + αϕbi

)
. (2.18)
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By (2.18), (2.16), and direct computations, we obtain

Γ = [Hm]ym = cα
{

(n+ 1)ψ + 2sϕ+ ϕ2(b2 − s2)
}
, (2.19)

Γ = αc
{

(n+ 1)ψ + 2sϕ+ ϕ2(b2 − s2)
}
, (2.20)

Γ|i = ciα
{

(n+ 1)ψ + 2sϕ+ ϕ2(b2 − s2)
}

+ 2c2α
{

(n+ 1)ψ1 + 2sϕ1 + ϕ2 + ϕ12(b2 − s2)
}
bi

+ c2
{

(n+ 1)ψ2 + 2ϕ+ ϕ22(b2 − s2)
}
yi, (2.21)

Γ·i =
c

α

{
(n+ 1)ψ + ϕ2(b2 − s2)

}
yi + 2cϕbi

+ c
{

(n+ 1)ψ2 + ϕ22(b2 − s2)
}(
bi − s

yi
α

)
, (2.22)

Γ·i·m =
c

α

{
(n+ 1)ψ22 + ϕ222(b2 − s2) + 2(ϕ2 − sϕ22)

}(
bi − s

yi
α

)(
bm − s

ym
α

)
+
c

α

{
(n+ 1)(ψ − sψ2) + (ϕ2 − sϕ22)(b2 − s2)

}(
aim −

yiym
α2

)
,(2.23)

Γ·i·mH
m = c2αϕ

{
(n+ 1)

[
ψ − sψ2 + ψ22(b2 − s2)

]
+

[
3(ϕ2 − sϕ22) + ϕ222(b2 − s2)

]
(b2 − s2)

}(
bi − s

yi
α

)
,(2.24)

Γ·i|my
m = c2α

{
(n+ 1)(ψ22 + 2sψ12) + (ϕ222 + 2sϕ221)(b2 − s2)

}(
bi − s

yi
α

)
+ c2

{
(n+ 1)(ψ2 + 2sψ1) + (ϕ22 + 2sϕ12)(b2 − s2) + 2ϕ

}
yi

+ 2c2α(ϕ2 + 2sϕ1)bi + c0

{ 1

α

[
(n+ 1)ψ + ϕ2(b2 − s2)

]
yi + 2ϕbi

+
[
(n+ 1)ψ2 + ϕ22(b2 − s2)

](
bi − s

yi
α

)}
. (2.25)

We plug (2.21),(2.24), and (2.25) into (2.16), and obtain

χi =
[
c2
(1− (b2 − s2)

s

)
Ω2 + 2c2Ω1 + (2c2ϕ− µ)Ω + 2c2(b2 − s2)(2ϕ− γ)

]
s·jα

2,

where

s·jα
2 = αbi − syi
Ξ = Ξ(r, s) = ψ − sψ2

Υ = Υ(r, s) = ϕ2 − sϕ22

Ω = (n+ 1)Ξ + (b2 − s2)Υ (2.26)

This completes the proof. �
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By Lemma 2.2, we can easily obtain the following.

Lemma 2.3. Let F = αφ(b2, β/α) be a general (α, β)-metric on an n-dimensional

manifold M with n ≥ 3, where α and β satisfy (1.3). Then F has vanishing

χ-curvature if and only if(1− (b2 − s2)

s

)
Ω2 + 2Ω1 +

(2c2ϕ− µ)

c2
Ω = −2c2(b2 − s2)(2ϕ− γ)

c2
,

(2.27)

where

Ξ = Ξ(r, s) = ψ − sψ2

Υ = Υ(r, s) = ϕ2 − sϕ22

Ω = (n+ 1)Ξ + (b2 − s2)Υ

The H-curvature H = Hijdx
i ⊗ dxj is an important non-Riemannian quan-

tity defined by

Hij := Eij|my
m (2.28)

where Eij :=
1

2
S·i·j is the mean Berwald curvature and S is the S-curvature.

The H-curvature, [5], can also be expressed in terms of χi by

Hij =
1

2

{
χi·j + χj·i

}
, (2.29)

Lemma 2.4. Let F = αφ(b2, β/α) be a general (α, β)-metric on a manifold

M with dimension n ≥ 3, where α, β satisfy (1.3). Then the χi-curvature and

Hij-curvature are given in the following formula:

χi = Ms·iα
2, (2.30)

Hij =
2

α2

{
M2(αbi − syi)(αbj − syj)− sM(aijα

2 − yiyj)
}

(2.31)

where

M = c2
(1− (b2 − s2)

s

)
Ω2 + 2c2Ω1 + (2c2ϕ− µ)Ω + 2c2(b2 − s2)(2ϕ− γ).

Proof. By (2.17), we have

χi = Ms·iα
2, (2.32)

where M = c2
(

1−(b2−s2)
s

)
Ω2 + 2c2Ω1 + (2c2ϕ − µ)Ω + 2c2(b2 − s2)(2ϕ − γ).

After differentiating we get

χi·j = M2s·js·iα
2 +M(s·i·jα

2 + s·i2yj),

χj·i = M2s·js·iα
2 +M(s·j·iα

2 + s·j2yi).
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By using the definition of Hij in (2.29), we obtain

Hij = 2M2s·js·iα
2 + 2M(s·j·iα

2 + s·jyi + s·iyj). (2.33)

�

The equation (2.33) can be rewritten in the following form

Hij =
2

α2

{
M2(αbi − syi)(αbj − syj)− sM(aijα

2 − yiyj)
}
. (2.34)

We have the following lemma.

Lemma 2.5. Let F = αφ(b2, β/α) be a general (α, β)-metric on an n-dimensional

manifold M with n ≥ 3. Then we have χ = 0 if and only if H = 0.

Proof. The necessary condition is obvious. To show the sufficient condition we

suppose that H = 0, then we have Hij = 0. By contracting the equation (2.33)

with bibj , we obtain

Hijb
ibj = (b2 − s2)

{
M2(b2 − s2)− sM

}
, and

0 = M2(b2 − s2)− sM (2.35)

We use (2.35) in (2.34) and we get M2 = 0. Hence, by using the equation

(2.35), we get M = 0. Therefore, by (2.32) we have χi = 0, hence χ = 0. �

3. Proof of Main Theorems

In this section we give the proofs of the main results which become quite

simple after all the preparation given in the preliminaries section.

Proof of Theorem 1.1: We get the Ricci curvature Ric as the trace of the

Riemannian curvature tensor in (1.12) as given below

Ric =
(

(n− 1)R1 + (b2 − s2)R5

)
α2. (3.1)

We also have

(n− 1)κφ2 = (n− 1)R1 + (b2 − s2)R5

This implies the result given below.

Ric = (n− 1)κF 2.

The converse is obvious. �

Proof of Theorem 1.2: We know that for any Finsler metrics, the authors

proved in their recent paper [4] that for a constant κ we have

Ricik = (n− 1)κgik if and only if Ric = (n− 1)κF 2, χk = 0.
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Here Ricik is equivalent to Ricik. In particular, for a general (α, β)-metrics

satisfying (1.3), we have

Ricik = (n− 1)κgik if and only if Ric = (n− 1)κF 2, χk = 0.

By (2.17) and (3.1), we prove the theorem. �

Proof of Theorem 1.3: If F is of scalar flag curvature κ = κ(x, y), then by

(1.12) we have

Rij = κ(F 2δij − FFyjyi), (3.2)

and by the following equation

Fyj =
1

α

{
yjφ+ φ2(αbj − syj)

}
,

we obtain

0 = (R1 − κφ2)(α2δij − yjyi) + (R3 + κφφ2)(αbj − syj)yi

+R5(αbj − syj)αbi. (3.3)

Since the dimension of the manifold M is n ≥ 3, we obtain

R1 = κφ2. (3.4)

We plug (3.4) into (3.3), we have

(R3 + κφφ2)(αbj − syj)yi +R5(αbj − syj)αbi = 0. (3.5)

After contracting (3.5) by bj , we obtain{
(R3 + κφφ2)yi +R5αb

i
}

(b2 − s2)α = 0. (3.6)

Hence, we obtain

R3 + κφφ2 = 0, R5 = 0. (3.7)

This completes the proof. �

Proof of Theorem 1.4: We only prove the sufficient condition. Assume

that (1.19) holds. Since R5 = 0, then by Theorem 1.3, we see that F is of

scalar flag curvature. Then, by Theorem 1.1, we obtain that F is of constant

Ricci curvature κ. Then F must be of constant flag curvature κ, since κ is a

constant. �
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