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Pişcoran Laurian-Ioana and Marzie Aminib

aDepartment of Mathematics and Computer Science Victoriei 76

North University Center of Baia Mare, Technical University of Cluj Napoca

430122 Baia Mare, Romania
bDepartment of Mathematics, Faculty of Science

University of Qom, Qom. Iran

E-mail: Laurian.PISCORAN@mi.utcluj.ro

E-mail: marzeia.amini@gmail.com

Abstract. Let F =
√
α(α+ β) be a conformally flat square-root (α, β)-metric

on a manifold M of dimension n ≥ 3, where α =
√
aij(x)yiyj is a Riemann-

ian metric and β = bi(x)y
i is a 1-form on M . Suppose that F has relatively

isotropic mean Landsberg curvature. We show that F reduces to a Riemannian

metric or a locally Minkowski metric.
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1. Introduction

The class of p-power (α, β)-metrics on a manifoldM is in the following form

F = α
(
1 +

β

α

)p
where p ̸= 0 is a real constant, α =

√
aij(x)yiyj is a Riemannian metric and

β = bi(x)y
i is a 1-form on M . If p = 1, then we get the Randers metric

F = α + β which has special and important curvature properties. Randers

metric regarded not as Finsler metrics but as “affinely connected Riemannian

metrics” [2]. This metric was first recognized as a kind of Finsler metric in
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1957 by Ingarden, who first named them Randers metrics [5]. If p = 2, then

one can get the square metric F = (α + β)/α. If p = −1, then we have the

Matsumoto metric F = α2/(α+ β). Matsumoto metric is an important metric

in Finsler geometry which is the Matsumoto’s slope-of-a-mountain metric [4].

In the case of p = 1/2, we get

F =
√
α(α+ β)

which is called a square-root metric [6]. In [20], Yang determined the local

structure of a two-dimensional square-root metric of Einstein-reversibility. He

proved the following.

Theorem A. ([20]) Let F =
√
α(α+ β) be a two-dimensional square-root

metric which is Einsteinian (equivalently, of isotropic flag curvature). Then α

and β can be locally determined by

α =

√
B

(1−B)
3
4

√
(y1)2 + (y2)2

u2 + v2
, β =

B

(1−B)
3
4

uy1 + vy2

u2 + v2
, (1.1)

where 0 < B = B(x) < 1, u = u(x), v = v(x) are some scalar functions which

satisfy the following PDEs:

u1 = v2, u2 = −v1, uB1 + vB2 = 0, (1.2)

where ui := uxi , vi := vxi and Bi := Bxi . Further, the isotropic flag curvature

K is given by

K = − (u2 + v2)
√
1−B

2B2
(B11 +B22)−

(u2 + v2)2(3B − 2)

4B3
√
1−B

(B1

v

)2
, (1.3)

where Bij := Bxixj .

This shows that the square-root (α, β)-metric deserve more attention. In this

paper, we are going to consider a square-root (α, β)-metric from standpoint of

conformal geometry. A conformal map is a function that locally preserves an-

gles, but not necessarily lengths. Let U and V be open subsets of Rn. A

function f : U → V is called conformal (or angle-preserving) at a point p ∈ U
if it preserves angles between directed curves through p, as well as preserving

orientation. Conformal maps preserve both angles and the shapes of infinites-

imally small figures, but not necessarily their size or curvature. In Differential

Geometry, the Conformal Geometry is the study and investigate of the set of

angle-preserving transformations on a manifold which has an interesting and

old background in Mathematics. It has played an important role in Physical

Theories. A conformal field theory is a quantum field theory that is invariant

under conformal transformations. Conformal field theory has important appli-

cations to condensed matter physics, statistical mechanics, quantum statistical
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mechanics, and string theory [3]. Statistical and condensed matter systems are

indeed often conformally invariant at their thermodynamic or quantum critical

points.

The conformal transformation of Riemannian metrics and its related sub-

jects such as Riemannian curvature and Ricci curvature have been studied by

many geometers. There are many important local and global results in Rie-

mannian conformal geometry, which in turn lead to a better understanding on

Riemann manifolds. As the same as Riemannian geometry and its different

notions, the conformal geometry is a alive and important subject in Finsler

geometry. The first to treat the conformal theory of Finsler metrics generally

was M. S. Knebelman [11]. He defined two metric functions F and F̄ as con-

formal if the length of an arbitrary vector in the one is proportional to the

length in the other, that is, if ḡij = φgij . The length of vector ε means here

the fact that φgij , as well as gij , must be Finsler metric tensor, he showed that

φ falls into a point function. Let (M,F ) be an n-dimensional Finsler manifold

and ϕ a transformation on M . The ϕ is called the conformal transformation,

if it preserves the angles. Let X be a vector field on M and {φt} be the local

one-parameter group of local transformations on M generated by X. Then X

is called a conformal vector field on M if each φt is a local conformal trans-

formation of M . It is well known that X is a conformal vector field on M if

and only if there is a scalar function α on M such that £Xg = 2αg where £X

denotes Lie derivation with respect to the vector field X. Specially X is called

homothetic if α is constant and it is called and isometry or killing vector field

when α vanishes. The well-known Weyl theorem shows that the projective

and conformal properties of a Finsler space determine the metric properties

uniquely. This means that the conformal properties of a Finsler metric and

related subject to it deserve extra attention.

Let F and F̃ be two arbitrary Finsler metrics on a manifold M . Then

we say that F is conformal to F̃ if and only if there exists a scalar function

σ = σ(x) such that F (x, y) = eσ(x)F̃ (x, y). The scalar function σ is called the

conformal factor. A Finsler metric F = F (x, y) on a manifold M is called a

conformally flat metric if there exists a locally Minkowski metric F̃ = F̃ (y) such

that F = eκ(x)F̃ , where κ = κ(x) is a scalar function on M . A new and hot

issue is to characterization of conformally flat Finsler metrics. In [8], Asanov

constructed a Finslerian metric function on the manifold N = R×M , whereM

is a Riemannian manifold endowed with two real functions, and showed that

the tangent Minkowski spaces of such a Finsler space are conformally flat. This

motivated him to propose a Finslerian extension of the electromagnetic field

equations whose solutions are explicit images of the solutions to the ordinary

Maxwell equations.

In [18], Tayebi-Razgordani proved that every conformally flat weakly Ein-

stein 4-th root (α, β)-metric F = 4
√
aijklyiyjykyl on a manifoldM of dimension
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n ≥ 3 is either a Riemannian metric or a locally Minkowski metric. Also, they

showed that every conformally flat 4-th root (α, β)-metric of almost vanishing

Ξ-curvature on a manifold M of dimension n ≥ 3 reduces to a Riemannian

metric or a locally Minkowski metric. In order to find conformally flat Finsler

metrics, one can consider the class of m-th root Finsler metrics. Let (M,F )

be an n-dimensional Finsler manifold, TM its tangent bundle and (xi, yi) the

coordinates in a local chart on TM . Let F : TM → R be a scalar function

defined by F = m
√
A, where A := ai1...im(x)yi1yi2 . . . yim and ai1...im are sym-

metric in all its indices. Then F is called an m-th root Finsler metric. For

more progress, see [16], [17] and [19].

The third root metrics F = 3
√
aijk(x)yiyjyk are called the cubic metrics. In

[1], the author studied conformally flat 3-th root (α, β)-metric with relatively

isotropic mean Landsberg curvature and proved the following.

Theorem B. ([1]) Let F = 3
√
c1α2β + c2β3 be a conformally flat 3-th root

(α, β)-metric on a manifold M of dimension n ≥ 3, where c1 and c2 are real

constants. Suppose that F has relatively isotropic mean Landsberg curvature

J+ c(x)F I = 0, where c = c(x) is a scalar function on M . Then F reduces to

a Riemannian or a locally Minkowski metric.

The fourth root metrics F = 4
√
aijkl(x)yiyjykyl are called the quartic met-

rics. In [15], Tayebi and the author studied conformally flat 4-th root (α, β)-

metric with relatively isotropic mean Landsberg curvature and proved the fol-

lowing.

Theorem C. ([1]) Let F = 4
√
c1α4 + c2α2β2 + c3β4, be a conformally flat

4-th root (α, β)-metric on a manifold M of dimension n ≥ 3, where c1, c2 and

c3 are real constants. Suppose that F has relatively isotropic mean Landsberg

curvature J + c(x)F I = 0, where c = c(x) is a scalar function on M . Then F

is a Riemannian or a locally Minkowski metric.

In this paper, we are going to study the conformally flat square-root (α, β)-

metric F =
√
α(α+ β) with relatively isotropic mean Landsberg curvature.

More precisely, we prove the following.

Theorem 1.1. Let F =
√
α(α+ β) be a conformally flat square-root (α, β)-

metric on a manifold M of dimension n ≥ 3, where α =
√
aij(x)yiyj is a

Riemannian metric and β = bi(x)y
i is a 1-form on M . Suppose that F has

relatively isotropic mean Landsberg curvature

J+ c(x)F I = 0, (1.4)
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where c = c(x) is a scalar function on M . Then F reduces to a Riemannian

metric or a locally Minkowski metric.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Suppose that TM =
∪

x∈M TxM

and TM0 := TM − {0} denote the tangent bundle and slit tangent bundle

over M . Let (M,F ) be a Finsler manifold. The following quadratic form

gy : TxM × TxM → R on TxM is called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s=t=0, u, v ∈ TxM.

Using the fundamental tensor, one can define a quantity that separate Rie-

mannian metrics from Finsler metrics. Let x ∈ M and Fx := F |TxM . To

measure the non-Euclidean feature of Fx, for a non-zero vector y ∈ TxM0 :=

TxM − {0}, define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

=
1

4

∂3

∂r∂s∂t

[
F 2(y+ru+sv+ tw)

]
r=s=t=0

,

where u, v, w ∈ TxM . By definition, Cy is a symmetric trilinear form on TxM .

The family C := {Cy}y∈TM0 is called the Cartan torsion. Thus C = 0 if and

only if F is Riemannian.

Also, by using the Cartan torsion, one can define a weaker notion of it

that characterize Riemannian metrics from the class of Finsler metrics. For

y ∈ TxM0, define Iy : TxM → R by

Iy(u) =
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called

the mean Cartan torsion. Thus, Iy(u) := Ii(y)u
i, where Ii := gjkCijk.

On the slit tangent bundle TM0, the Landsberg curvature Lijk := Lijkdx
i⊗

dxj ⊗ dxk is defined by

Lijk := Cijk;my
m,

where ”; ” denotes the horizontal covariant derivative with respect to F . Also,

we have

Ly(u, v, w) :=
d

dt

[
Cσ̇(t)

(
U(t), V (t),W (t)

)]
t=0

,

where y ∈ TxM , σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y and

U = U(t), V = V (t), W =W (t) are linearly parallel vector fields along σ with

U(0) = u, V (0) = v,W (0) = w. Then the Landsberg curvature Ly is the rate

of change of Cy along geodesics for any y ∈ TxM0.
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For an n-dimensional Finsler manifold (M,F ), there is a special vector field

G which is induced by F on TM0 := TM\{0}. In a standard coordinates

(xi, yi) for TM0, it is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi :=
gil

4

{ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
The homogeneous scalar functions Gi are called the geodesic coefficients of F .

The vector field G is called the associated spray to (M,F ).

The Landsberg curvature can be expressed as following

Lijk = −1

2
FFym [Gm]yiyjyk (2.1)

The horizontal covariant derivatives of the mean Cartan torsion I along

geodesics give rise to the mean Landsberg curvature Jy : TxM → R which are

defined by Jy(u) := Ji(y)u
i, where

Ji := Ii|sy
s.

Here, “|” denotes the horizontal covariant derivative with respect to the Berwald

connection of F . The family J := {Jy}y∈TM0 is called the mean Landsberg

curvature. Also, the mean Landsberg curvature can be expressed as following

Ji := gjkLijk (2.2)

A Finsler metric F on a manifold M is called of relatively isotropic mean

Landsberg curvature if

J+ cF I = 0,

where c = c(x) is a scalar function on M .

In this paper, we will focus on studying (α, β)-metrics. Let “|” denote the

covariant derivative with respect to the Levi-Civita connection of α. Denote

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
sij := aimsmj , rij := aimrmj , rj := birij , sj := bisij ,

where

(aij) := (aij)
−1, bj := ajkbk.

We put

r0 := riy
i, s0 := siy

i, r00 := rijy
iyj , si0 := sijy

j .

Let Gi and Gi
α denote the geodesic coefficients of F and α respectively in the

same coordinate system. Then we have

Gi = Gi
α + αQsi0 +

{
r00 − 2Qαs0

}{
Ψbi +Θα−1yi

}
, (2.3)
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where

Q :=
ϕ′

ϕ− sϕ′
,

Θ :=
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
[
ϕ− sϕ′ + (b2 − s2)ϕ′′

] ,
Ψ :=

ϕ′′

2
[
ϕ− sϕ′ + (b2 − s2)ϕ′′

] .
It is easy to see that if rij = sij = 0, then Gi = Gi

α. In this case, F reduces to

a Berwald metric. For more details, see [10] and [14].

Let

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′,

Ψ1 :=
√
b2 − s2∆

1
2

[√
b2 − s2Φ

∆
3
2

]′
,

hj := bj − α−1syj .

By (2.1), (2.2), (2.3), the mean Landsberg curvature of the (α, β)-metric F =

αϕ(s), s = β/α, is given by

Jj =
1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+ α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

}
.

Here, yj = aijy
i. See [9] and [12].

In [12], Li-Shen proved the following.

Theorem 2.1. ([12]) Let F = αϕ(β/α) be an almost regular non-Riemannian

(α, β)-metric on a manifold M of dimension n ≥ 3. Then F is a weakly

Landsberg metric if and only if β satisfies

rij = k
{
b2aij − bibj

}
, sij = 0, (2.4)

where k = k(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ =
λ√

b2 − s2
∆

3
2 , (2.5)

where λ is a constant.
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3. Proof of Theorem 1.1

in this section, we are going to prove Theorem 1.1. To prove it, we need the

following.

Lemma 3.1. ([9]) For an (α, β)-metric F = αϕ(s), s = β/α, the mean Cartan

torsion is given by

Ii = − 1

2F

Φ

∆
(ϕ− sϕ′)hi. (3.1)

In [9], by using (3.1), Cheng-Wang-Wang proved the following result that

characterizes Riemannian metrics from the class of (α, β)-metrics.

Lemma 3.2. ([9]) An (α, β)-metric F is a Riemannian metric if and only if

Φ = 0.

Note that the converse of Lemma 3.2 may not be holds.

In [9], the following formula obtained

Jj + c(x)FIj = − 1

2α4∆

{
2α3

b2 − s2

[
Φ

∆
+ (n+ 1)(Q− sQ′)

]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+α

[
− α2Q′s0hj + αQ(α2sj − yjs0)

+α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

+α2∆sj0

]
Φ

∆
+ c(x)α4Φ(ϕ− sϕ′)hj

}
. (3.2)

It is interesting characterize locally Minkowskian (α, β)-metric. Then, we

remark the following Lemma.

Lemma 3.3. ([7]) Let F = αϕ(s), s = β/α, be an (α, β)-metric. Then F

is locally Minkowskian if and only if α is a flat Riemannian metric and β is

parallel with respect to α.

In [9], Cheng-Wang-Wang studied the class of (α, β)-metrics with relatively

isotropic mean Landsberg curvature. They proved the following.

Lemma 3.4. ([9]) If ϕ = ϕ(s) satisfies Ψ1 = 0, then F is Riemannian.

Now, assume that F = αϕ(s), s = β/α, is a conformally flat Finsler metric,

that is, F is conformally related to a Minkowski metric F̃ . Then there exists
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a scalar function σ = σ(x) on the manifold, so that F̃ = eσ(x)F . It is easy to

see that

F̃ = α̃ϕ(s̃), s̃ = β̃/α̃.

We have

α̃ = eσ(x)α, β̃ = eσ(x)β

which are equivalent to

ãij = e2σ(x)aij , b̃i = eσ(x)bi.

Let “∥” denote the covariant derivative with respect to the Levi-Civita connec-

tion of α̃. Put

σi :=
∂σ

∂xi
, σi := aijσj .

The Christoffel symbols Γi
jk of α and the Christoffel symbols Γ̃i

jk of α̃ are

related by

Γ̃i
jk = Γi

jk + δijσk + δikσj − σiajk.

Hence, one can obtain

b̃i∥j =
∂b̃i
∂xj

− b̃sΓ̃
i
jk = eσ(bi|j − bjσi + brσ

raij). (3.3)

By Lemma 3.3, for Minkowski metric F̃ , we have b̃i∥j = 0. Thus

bi|j = bjσi − brσ
raij , (3.4)

rij =
1

2
(σibj + σjbi)− brσ

raij , (3.5)

sij =
1

2
(σibj + σjbi), (3.6)

rj = −1

2
(brσ

r)bj +
1

2
σjb

2, (3.7)

sj =
1

2
(brσ

r)bj − σjb
2, (3.8)

ri0 =
1

2
[σiβ + (σry

r)bi]− σrb
ryi, (3.9)

si0 =
1

2
[σiβ + (σry

r)bi]. (3.10)

Further, we have

r00 = (σry
r)β − (σry

r)α2, (3.11)

r0 =
1

2
(σry

r)b2 − 1

2
(σrb

r)β, (3.12)

s0 =
1

2
(σry

r)β − 1

2
(σry

r)b2. (3.13)

By (3.12) and (3.13), the conformally flat (α, β)-metrics satisfying

r0 + s0 = 0
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which is equivalent to the length of β with respect to α being a constant.

Now, we take an orthonormal basis at any point x with respect to α such

that

α =

√√√√ n∑
i=1

(yi)2 and β = by1,

where b := ∥βx∥α denotes the norm of β with respect to α. This orthonor-

mal basis was introduced by Shen in [13] for two-dimensional case, where he

studied R-quadratic Finsler spaces and proved that the Cartan torsion of a

2-dimensional Randers metric is bounded.

By using the same coordinate transformation

ψ : (s, uA) −→ (yi)

in TxM , we get

y1 =
s√

b2 − s2
ᾱ, yA = uA, 2 ≤ A ≤ n, (3.14)

where

ᾱ =

√√√√ n∑
i=2

(uA)2.

We have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ. (3.15)

Put

σ̄0 := σAu
A.

Then, by (3.4)-(3.8), (3.14) and (3.15) we have

r00 = −bσ1ᾱ2 +
bsσ̄0ᾱ√
b2 − s2

, (3.16)

r0 =
1

2
b2σ̄0 = −s0, (3.17)

r10 =
1

2
bσ̄0, (3.18)

rA0 =
1

2

σAbsᾱ√
b2 − s2

− (bσ1)uA, (3.19)

s1 = 0, sA = −1

2
σAb

2, (3.20)

s10 =
1

2
bσ̄0, sA0 =

1

2

σAbsᾱ√
b2 − s2

, (3.21)

h1 = b− s2

b
, hA = −

√
b2 − s2suA

bᾱ
. (3.22)

Using the mentioned results, we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1: Let F =
√
α(α+ β) be a conformally flat square-

root (α, β)-metric on a manifold M . We remark that b̃ = constant. If b̃ = 0,

then F = ek(x)α̃ is a Riemannian metric. Now, let F is not Riemannian metric.

Assume that F is a conformally flat (α, β)-metric with relatively isotropic mean

Landsberg curvature. By (3.2) and r0 + s0 = 0, we get

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj + αQ(α2sj − yjs0)

+ α2∆sj0 + α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hj = 0. (3.23)

Letting j = 1 in (3.23), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)h1 + α

[
− α2Q′s0h1 + αQ(α2s1 − y1s0)

+ α2∆s10 + α2(r10 − 2αQs1)− (r00 − 2αQs0)y1

]
Φ

∆

+ c(x)α4Φ(ϕ− sϕ′)h1 = 0. (3.24)

Putting (3.15)-(3.22) into (3.24) and multiplying the result with 2∆(b2−s2)5/2
implies that

2b2(b2 − s2)3/2∆(bΦϕc− bΦsϕ′c−Ψ1σ1)ᾱ
4

+ b2(b2 − s2)σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2)

+ 2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s)ᾱ
3 = 0. (3.25)

From (3.25), we get

∆
[
bΦϕc− bΦsϕ′c−Ψ1σ1

]
= 0, (3.26)

σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2) + 2b2Ψ1∆Q

+b2Φ+ b2ΦQs+ 2Ψ1∆s = 0. (3.27)

Note that ∆ = Q′(b2 − s2) + sQ+ 1. Simplifying (3.27) yields

(b2Ψ1∆Q+Ψ1∆s)σ̄0 = 0,

that is

Ψ1∆(b2Q+ s)σ̄0 = 0. (3.28)
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Letting j = A in (3.23), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hA + α

[
− α2Q′s0hA + αQ(α2sA − yAs0)

+ α2∆sA0 + α2(rA0 − 2αQsA)− (r00 − 2αQs0)yA

]
Φ

∆

+ c(x)α4Φ(ϕ− sϕ′)hA = 0. (3.29)

Putting (3.15)-(3.22) into (3.29) and by using the similar method used in the

case of j = 1, we get

−(s∆+ s+ b2Q)b2ΦσAᾱ
2 +

[
(s∆+ s+ b2Q)b2Φ

+2s(b2Q+ s)Ψ1∆
]
σ̄0uA = 0, (3.30)

and

s(b2 − s2)
[
b(ϕ− sϕ′)Φc−Ψ1σ1

]
∆uA = 0. (3.31)

It is easy to see that (3.31) is equivalent to (3.26). Further, multiplying (3.30)

with uA implies that

s(b2Q+ s)Ψ1∆σ̄0ᾱ
2 = 0. (3.32)

It is easy to see that (3.32) is equivalent to (3.28). In summary, conformally

flat (α, β)-metrics with relatively isotropic mean Landsberg curvature satisfy

(3.26) and (3.28). According to (3.28), we have some cases as follows:

Case (i): If b2Q+ s = 0, then we have

ϕ = κ
√
b2 − s2,

which is a contradiction with the assumption of cubic metric. Then we have

b2Q+ s ̸= 0.

Case (ii): If Ψ1 = 0, then by Lemma 3.4, F is Riemannian.

Case (iii): If Ψ1 ̸= 0, then σA = 0. In the following, we prove that if Ψ1 ̸= 0,

then by (3.26) one can get σ1 = 0.

Now, assume that

ϕ =
√
1 + s, (3s2 + 6s− b2 + 4) > 0, (1 + s) > 0 (3.33)

Simplifying (3.26) and multiplying it by ∆2, we get{
[−sΦ+ (b2 − s2)Φ′]∆− 3

2
(b2 − s2)Φ∆′

}
σ1 − b∆2Φ(ϕ− sϕ′)c = 0. (3.34)
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Putting (3.33) into (3.34) and multiplying it by

ϑ := (2 + s)5, (3.35)

we can express the result as a polynomial of s[
− 6σ1

{
3ns6 + (9n+ 6)s5 + (2− 5b2n+ 2b2)s4 − (8n+ 16nb2 + 6b2 + 24)s3

+
1

3
(−8b4 + 13b4n+ 6b2 + 86b2n+ 88n+ 8)s2 +

1

3
(32b4 + 11b4n+ 42b2 + 56b2n

+ 32n− 32)s+ (2b6 − b6n+ 2b4n+ 8b2n− 8)
}√

1 + s− bc
(
4(n− 1) + 6(n+ 1)s

+ 3ns2 − (n− 2)b2
)]

(3s2 + 6s− b2 + 4)
√
1 + s = 0 (3.36)

Equation (3.36) is equivalent to the following two equations

bc

(
4n− 4 + 6(n+ 1)s+ 3ns2 − (n− 2)b2

)
= 0, (3.37)

and

− 6σ1

{
3ns6 + (9n+ 6)s5 + (2− 5b2n+ 2b2)s4 − (8n+ 16nb2 + 6b2 + 24)s3

+
1

3
(−8b4 + 13b4n+ 6b2 + 86b2n+ 88n+ 8)s2 +

1

3
(32b4 + 11b4n+ 42b2

+ 56b2n+ 32n− 32)s+ (2b6 − b6n+ 2b4n+ 8b2n− 8)

}
= 0. (3.38)

(3.38) implies that −18nσ1 = 0. Then we get σ1 = 0. Together with σA = 0, it

follows that σ is a constant, which means that F is a locally Minkowski metric.

This completes the proof. □
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