TY - JOUR
ID - 1371
TI - On conformally ﬂat square-root (α,β)-metrics
JO - Journal of Finsler Geometry and its Applications
JA - JFGA
LA - en
SN -
AU - Laurian-Ioan, Piscoran
AU - Amini, Marzeiya
AD - Department of Mathematics and Computer Science, Victoriei 76
North University, Center of Baia Mare, Technical University of Cluj Napoca,
430122 Baia Mare, Romania.
Laurian.PISCORAN@mi.utcluj.ro
AD - Department of Mathematics, Faculty of science, University of Qom, Iran.
marzeia.amini@gmail.com
Y1 - 2021
PY - 2021
VL - 2
IS - 2
SP - 89
EP - 102
KW - square-root metric, (α
KW - β)-metric, Conformally ﬂat metric, relatively isotropic mean Landsberg curvature
DO - 10.22098/jfga.2021.9503.1049
N2 - Let F = √α(α + β) be a conformally ﬂat square-root (α; β)-metric on a manifold M of dimension n ≥ 3, where α = √aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form on M. Suppose that F has relatively isotropic mean Landsberg curvature. We show that F reduces to a Riemannianmetric or a locally Minkowski metric.
UR - https://jfga.uma.ac.ir/article_1371.html
L1 - https://jfga.uma.ac.ir/article_1371_eddf0cabe16c832ee286e100ffce8ea3.pdf
ER -